MATH REVISION BOOKLET

JACOB WU EDUCATIONAL CONSULTANCY

Tuesday, March 6, 2018

Note: Although the chapters in this booklet align with those from the textbook, the sub-topics in this booklet corresponds to one or more sub-topics in the textbook.

CONTENTS

1 Logarithms

SIMPLIFYING EXPONENTS AND SURDS LOGARITHMS

2 Quadratic Function

QUADRATIC EQUATION

3 Identities and Inequalities

DIVIDING POLYNOMIAL SOLVING QUADRATIC INEQUALITIES

4 Graphs and Functions

SOME TEXT

5 Series

SOME TEXT

6 Binomial Series

SOME TEXT

7 Scalar and Vector

SOME TEXT

8 Rectangular Cartesian Coordinates

SOME TEXT

9 Calculus

SOME TEXT

10 Trigonometry SOME TEXT

HARITHMS

14

$$a^m \times a^n = a^{m+n}$$

$$a^m \div a^n = a^{m-n}$$

$$(a^m)^n = a^{mn}$$

$$a^{-m} = \frac{1}{a^m}$$

$$a^{\frac{n}{m}} = \sqrt[m]{a^n}$$

$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$

$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$

so that $a^b = x$ and $a^c = y$

$$\frac{1}{\sqrt{a}} = \frac{1 \times \sqrt{a}}{\sqrt{a} \times \sqrt{a}} = \frac{\sqrt{a}}{a}$$

 $log_a n = x$ means that $a^x = n$

$$log_a 1 = 0$$
 since $a^0 = 1$

$$log_a a = 1$$
 since $a^1 = a$

$$2^3 = 8 \Leftrightarrow \log_2(8) = 3$$
base

$$log_a xy = log_a x + log_a y$$
 let $log_a x = b$, $log_a y = c$,

$$log_a \frac{x}{y} = log_a x - log_a y$$
 so that $a^b = x$ and $a^c = y$
 $a^b \times a^c = \underline{a^{b+c} = xy}$
 $log_a xy = b + c = log_a x + log_a y$

$$log_a(x^k) = k log_a x$$

$$log_a x = \frac{log_b x}{log_b a}$$

$$log_a x = \frac{log_b x}{log_b a}$$
 let log_ax = m, so that a^m = x
$$log_b(a^m) = log_b(x)$$
 m log_ba = log_bx
$$log_a x \times log_b a = log_b x$$

QUADRATIC FUNCTION

QUADRATIC EQUATION

2A

A quadratic: $ax^2 + bx + c$

Factorize:

$$(\underline{\alpha} \times + a) (\underline{\beta} \times + b)$$
 in which $\underline{\alpha} \underline{\beta} = a$; $\underline{\alpha} \underline{\beta} + \underline{\alpha} \underline{b} = b$; and $\underline{a} + \underline{b} = c$

$$x^2 - y^2 = (x + y)(x - y)$$

$$(x+y)^2 = x^2 + y^2 + 2xy$$

$$(x - y)^2 = x^2 + y^2 - 2xy$$

Complete the Square: add a number to obtain a square, and deduct later

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

b² - 4ac — discriminant

> 0 ····· two roots

= 0 ······ 1 root

< 0 ····· no solution

product of roots = $\alpha \beta = c / a$

$$ax^{2} + bx + c = 0$$

$$x^{2} + bx/a = -c/a$$

$$x^{2} + bx/a + (b/2a)^{2} = (b/2a)^{2} - c/a$$

$$(x + b/2a)^{2} = (b^{2} - 4ac)/4a^{2}$$

$$x + b/2a = \pm \sqrt{(b^{2} - 4ac)/2a}$$

$$x = (-b \pm \sqrt{(b^{2} - 4ac)})/2a$$

NTITIES AND

DIVIDING POLYNOMIAL

Polynomials can be divided by (ax \pm b), much like a regular division

Factor Theorem: if f(p) = 0 for f(x), then (x-p) is a factor of f(x)

e.g. (x-1) is factor of $f(x) = 4x^3 - 3x^2 - 1$ because $f(1) = 4(1^3) - 3(1^2) - 1 = 0$

Remainder Theorem: f(x) divided by (ax-b) has a remainder of f(b/a)

$$5x^{2}$$

$$x-4)5x^{3}-x^{2}+0x+6$$

$$-(5x^{3}-20x^{2})$$

$$19x^{2}+0x+6$$

SOLVING QUADRATIC INEQUALITIES

1. Solve the Quadratic

- $x^2 3x 4 = 0$
- $x^2 3x 4 > 0$
- 2. Sketch the Graph or Otherwise (x-4)(x+1)=0
- (x-4)(x+1) > 0 $x - 4 \stackrel{?}{>} 0$

3. Find Appropriate Range

x - 4 = 0x + 1 = 0

 $x + 1 \stackrel{?}{>} 0$

Or: linear programming

$$x^{2} - 3x - 4 > 0$$
$$(x - 4)(x + 1) > 0$$

$$x - 4 > 0$$
 and $x + 1 > 0$
 $x > 4$ $x > -1$

$$x - 4 < 0$$
 and $x + 1 < 0$
 $x < 4$ $x < -1$

If x is greater than 4 and greater than \int If x is less than 4 and less than -1, -1, then x is greater than 4.

then x is less than -1.

The solution set is $\{x : x > 4 \text{ or } x < -1\}$.

MATHS REVISION BOOKLET

"The roots of education are bitter, but the fruit is sweet."

-aristotle