ZNOTES / / IGCSE SERIES visit wwrw.znotes.org

Updated to 2017-19 Syllabus

OHE INOSE AOD. MATHSOBOB

[^0]$3 \left\lvert\, \begin{aligned} & \text { Chapter } 1 \\ & \text { Set Language }\end{aligned} \&\right.$ Notation
$3 \left\lvert\, \begin{aligned} & \text { Chapter 2 } \\ & \text { Functions }\end{aligned}\right.$
$3 \left\lvert\, \begin{aligned} & \text { Chapter } 3 \\ & \text { Quadratic Functions }\end{aligned}\right.$
$4{ }^{\text {Chapter } 4}$
Indices \& Surds
$\left.4\right|^{\text {chapter } 5}$
Factors of Polynomials
${ }^{|c|}$ Chapter 6
Simultaneous Equations
$4 \left\lvert\, \begin{aligned} & \text { Chapter 7 } \\ & \text { Logarithmic \& Exponential Functions }\end{aligned}\right.$
§| $\begin{aligned} & \text { Chapter } 8 \\ & \text { Straight Line Graphs }\end{aligned}$
$5 \left\lvert\, \begin{aligned} & \text { Chapter } 9 \\ & \text { Circular Measure }\end{aligned}\right.$
$\int \left\lvert\, \begin{aligned} & \text { CHAPTER } 10 \\ & \text { Trigonometry }\end{aligned}\right.$
|Chapter 12
Binomial Expansions
$6 \left\lvert\, \begin{aligned} & \text { CHAPTER } 13 \\ & \text { Vectors in } 2 \text { Dimensions }\end{aligned}\right.$
$6 \left\lvert\, \begin{aligned} & \text { Chapter } 14 \\ & \text { Matrices }\end{aligned}\right.$
$9 \left\lvert\, \begin{aligned} & \text { CHAPTER 15 } \\ & \text { Differentiation \& Integration }\end{aligned}\right.$

1. Set Language \& Notation

- A well-defined collection of objects is called a set and each object is called a member or element of the set
- A set is denoted by a capital letter and is expressed by:
- Listing its elements, e.g. $V=\{a, e, i, o, u\}$
- A set builder notation
$R \quad$ set of real numbers
$R^{+} \quad$ set of positive real numbers
N set of natural numbers
$Z \quad$ set of integers
$Z^{+} \quad$ set of positive integers
o e.g. $\{x: x$ is a prime number and $x<30\}$
- For any finite set $P, n(P)$ denotes the number of elements in P
- A null or empty set is denote by $\}$ or \varnothing
- For any two sets P and Q :

○ $P=Q$ if they have the same elements
$\circ P \subseteq Q$ if $x \in P \Longrightarrow x \in Q$
$\circ P \cap Q=\{x: x \in P$ and $x \in Q\}$
$\circ P \cap Q=\emptyset$ then P and Q are disjoint sets
○ $P \cup Q=\{x: x \in P$ or $x \in Q\}$

- For any set P and universal set ξ
$\circ P \subseteq \xi$ and $0 \leq n(P) \leq n(\xi)$
$\circ P^{\prime}=\{x: x \in \xi$ and $x \notin P\}$
$\circ P \cap P^{\prime}=\varnothing$
$\circ P \cup P^{\prime}=\xi$

2. Functions

- One-to-one functions: each x value maps to one distinct y value

$$
\text { e.g. } f(x)=3 x-1
$$

- Many-to-one functions: there are some $f(x)$ values which are generated by more than one x value

$$
\text { e.g. } f(x)=x^{2}-2 x+3
$$

Domain $=x$ values
Range $=y$ values

- Notation: $f(x)$ can also be written as $f: x \mapsto$
- To find range:
- Complete the square

$$
x^{2}-2 x+3 \Rightarrow(x-1)^{2}+2
$$

- Work out $\mathrm{min} /$ max point

Minimum point $=(1,2)$
\therefore all y values are greater than or equal to $2 . f(x) \geq 2$

- One-to-many functions do not exist
- Domain of $g(x)=$ Range of $g^{-1}(x)$

- Solving functions:

$\circ f(2): \quad$ substitute $x=2$ and solve for $f(x)$
○ $f g(x): \quad$ substitute $x=g(x)$
○ $f^{-1}(x)$: let $y=f(x)$ and make x the subject

- Transformation of graphs:

○ $f(-x)$: reflection in the y-axis

- $-f(x)$: reflection in the x-axis
- $f(x)+a$: translation of a units parallel to y-axis

○ $f(x+a)$: translation of $-a$ units parallel to x-axis

- $f(a x)$: stretch, scale factor $\frac{1}{a}$ parallel to x-axis

○ $a f(x)$: stretch, scale factor a parallel to y-axis

- Modulus function:
- Denoted by $|f(x)|$
- Modulus of a number is its absolute value
- Never goes below x-axis
- Makes negative graph into positive by reflecting negative part into x-axis
- Solving modulus function:
- Sketch graphs and find points of intersection
- Square the equation and solve quadratic
- Relationship of a function and its inverse:
- The graph of the inverse of a function is the reflection of a graph of the function in $y=x$

3. Quadratic Functions

- To sketch $y=a x^{2}+b x+c \quad a \neq 0$

\circ Use the turning point:

Express $y=a x^{2}+b x+c$ as $y=a(x-h)^{2}+k$ by
completing the square

$$
\begin{gathered}
x^{2}+n x \Leftrightarrow\left(x+\frac{n}{2}\right)^{2}-\left(\frac{n}{2}\right)^{2} \\
a(x+n)^{2}+k
\end{gathered}
$$

Where the vertex is $(-n, k)$
$a>0-u$-shaped \therefore minimum point
$a<0-\mathrm{n}$-shaped \therefore maximum point

- Find the \boldsymbol{x}-intercept:

- Factorize or use formula
- Type of root by calculating discriminant $b^{2}-4 a c$
- If $b^{2}-4 a c=0$, real and equal roots
- If $b^{2}-4 a c>0$, real and distinct roots
- If $b^{2}-4 a c<0$, no real roots
- Intersections of a line and a curve: if the simultaneous equations of the line and curve leads to a simultaneous equation then:
- If $b^{2}-4 a c=0$, line is tangent to the curve
- If $b^{2}-4 a c>0$, line meets curve in two points
- If $b^{2}-4 a c<0$, line does not meet curve
- Quadratic inequality:
$\circ(x-d)(x-\beta)<0 \Rightarrow d<x<\beta$
$\circ(x-d)(x-\beta)>0 \Rightarrow x<d$ or $x>\beta$

4. Indices \& SURDS

-Definitions:

- for $a>0$ and positive integers p and q

$$
\begin{array}{ll}
a^{0}=1 & a^{-p}=\frac{1}{a^{p}} \\
a^{\frac{1}{p}}=\sqrt[p]{a} & a^{\frac{p}{q}}=(\sqrt[p]{a})^{q}
\end{array}
$$

- Rules:

- for $a>0, b>0$ and rational numbers m and n

$$
\begin{array}{ll}
a^{m} \times a^{n}=a^{m+n} \\
\frac{a^{m}}{a^{n}}=a^{m-n} & a^{n} \times b^{n}=(a b)^{n} \\
& \quad \begin{array}{l}
a^{n} \\
\left.b^{n}\right)^{n}=a^{m n}
\end{array}
\end{array}
$$

5. Factors of Polynomials

- To find unknowns in a given identity

- Substitute suitable values of x

OR

- Equalize the given coefficients of like powers of x

Factor Theorem:

- If $(x-t)$ is a factor of the function $p(x)$ then $p(t)=0$

Remainder Theorem:

- If a function $f(x)$ is divided by $(x-t)$ then:

$$
\text { Remainder }=f(t)
$$

- The formula for remainder theorem:

$$
\text { Dividend }=\text { Divisor } \times \text { Quotient }+ \text { Remainder }
$$

6. Simultaneous Equations

- Simultaneous linear equations can be solved either by substitution or elimination
- Simultaneous linear and non-linear equations are generally solved by substitution as follows:
- Step 1: obtain an equation in one unknown \& solve it
- Step 2: substitute the results from step 1 into the linear equation to find the other unknown
- The points of intersection of two graphs are given by the solution of their simultaneous equations

7. Logarithmic \& Exponential Functions

- Definition
- for $a>0$ and $a \neq 1$

$$
y=a^{x} \Leftrightarrow x=\log _{a} y
$$

- For $\log _{a} y$ to be defined

$$
y>0 \text { and } a>0, a \neq 1
$$

- When the logarithms are defined

$$
\begin{array}{ll}
\log _{a} 1=0 & \log _{a} b+\log _{a} c \equiv \log _{a} b c \\
\log _{a} a=1 & \log _{a} b-\log _{a} c \equiv \log _{a} \frac{b}{c} \\
\log _{a} b \equiv \frac{\log b}{\log a} & \log _{a} b^{n} \equiv n \log _{a} b
\end{array}
$$

- When solving logarithmic equations, check solution with original equation and discard any solutions that causes logarithm to be undefined
- Solution of $a^{x}=b$ where $a \neq-1,0,1$
- If b can be easily written as a^{n}, then

$$
a^{x}=a^{n} \Rightarrow x=n
$$

- Otherwise take logarithms on both sides,

$$
\text { i.e. } \log a^{x}=\log b \text { and so } x=\frac{\log b}{\log a}
$$

- $\log \Rightarrow \log _{10}$
$-\ln \Rightarrow \log _{e}$

Logarithmic \& Exponential Graphs

8. STRAIGHT LINE GRAPHS

- Equation of a straight line:

$$
\begin{gathered}
y=m x+c \\
y-y_{1}=m\left(x-x_{1}\right)
\end{gathered}
$$

- Gradient:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

- Length of a line segment:

$$
\text { Length }=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

- Midpoint of a line segment:

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

- Parallelogram:
- $A B C D$ is a parallelogram \Leftrightarrow diagonals $A C$ and $B D$ have a common midpoint
- Special parallelograms = rhombuses, squares, rectangles
- Special gradients:
- Parallel lines: $m_{1}=m_{2}$
- Perpendicular lines: $m_{1} m_{2}=-1$
- Perpendicular bisector: line passes through midpoint
- To work out point of intersection of two lines/curves, solve equations simultaneously

9. Circular Measure

- Radian measure:

$$
\pi=180^{\circ} \quad 2 \pi=360^{\circ}
$$

Degree to Rad $=\times \frac{\pi}{180}$

$$
\text { Rad to Degree }=\times \frac{180}{\pi}
$$

- Arc length:

$$
s=r \theta
$$

- Area of a sector:

$$
A=\frac{1}{2} r^{2} \theta
$$

10. TRIGONOMETRY

- Trigonometric ratio of special angles:

isosceles right triangle

SINE CURVE

30-60-90 triangle

TANGENT CURVE

- Trigonometric ratios:
$\sec \theta=\frac{1}{\cos \theta} \quad \operatorname{cosec} \theta=\frac{1}{\sin \theta} \quad \cot \theta=\frac{1}{\tan \theta}$
- Trigonometric identities:

$$
\begin{array}{cc}
\tan \theta=\frac{\sin \theta}{\cos \theta} & \sin ^{2} \theta+\cos ^{2} \theta=1 \\
\cot ^{2} \theta+1=\operatorname{cosec}^{2} \theta & \tan ^{2} \theta+1=\sec ^{2} \theta
\end{array}
$$

- Sketching trigonometric graphs:

11. Permutations \& Combinations

- Basic Counting Principle: to find the number of ways of performing several tasks in succession, multiply the number of ways in which each task can be performed:
e.g. $5 \times 4 \times 3 \times 2$
- Factorial: $n!=n \times(n-1) \times(n-2) \ldots \times 3 \times 2 \times 1$ - NOTE: $0!=1$

- Permutations:

- The number of ordered arrangements of r objects taken from n unlike objects is:

$$
{ }^{n} P_{r}=\frac{n!}{(n-r)!}
$$

- Order matters

- Combinations:

- The number of ways of selecting r objects from n unlike objects is:

$$
{ }^{n} C_{r}=\frac{n!}{r!(n-r)!}
$$

- Order does not matter

12. Binomial Expansions

- The binomial theorem allows expansion of any expression in the form $(a+b)^{n}$

$$
(x+y)^{n}={ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1} y+{ }^{n} C_{2} x^{n-2} y^{2}+\cdots+{ }^{n} C_{n} y^{n}
$$

- e.g. Expand $(2 x-1)^{4}$

$$
\begin{aligned}
& (2 x-1)^{4}={ }^{4} C_{0}(2 x)^{4}+{ }^{4} C_{1}(2 x)^{3}(-1) \\
& +{ }^{4} C_{2}(2 x)^{2}(-1)^{2}+{ }^{4} C_{3}(2 x)(-1)^{3}+{ }^{4} C_{4}(-1)^{4} \\
& =1(2 x)^{4}+4(2 x)^{3}(-1)+6(2 x)^{2}(-1)^{2}+ \\
& 4(2 x)(-1)^{3}+1(-1)^{4} \\
& =16 x^{4}-32 x^{3}+24 x^{2}-8 x+1
\end{aligned}
$$

- The powers of x are in descending order

13. Vectors in 2 Dimensions

- Position vector: position of point relative to origin, $\overrightarrow{O P}$

- Forms of vector:

$\binom{a}{b}$
$\overrightarrow{A B}$
p
$a \mathrm{i}-b \mathrm{j}$

- Parallel vectors: same direction but different magnitude
- Generally, $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$
- Magnitude $=\sqrt{\mathrm{i}^{2}+\mathrm{j}^{2}}$
- Unit vectors: vectors of magnitude 1
- Examples: consider vector $\overrightarrow{A B}$

$$
\begin{aligned}
& \overrightarrow{A B}=2 \mathrm{i}+3 \mathrm{j} \quad|\overrightarrow{A B}|=\sqrt{13} \\
& \quad \therefore \text { Unit vector }=\frac{1}{\sqrt{13}}(2 i+3 j)
\end{aligned}
$$

- Collinear vectors: vectors on the same line
- Dot product:

$$
(a \mathbf{i}+b \mathbf{j}) \cdot(c \boldsymbol{i}+d \boldsymbol{j})=(a c \boldsymbol{i}+b d \boldsymbol{j})
$$

- Angle between two diverging vectors:

$$
\cos A=\frac{a \cdot b}{|a||b|}
$$

Relative Velocity

- Motion in the water:

$$
V_{w}=\text { true velocity of water }
$$

$V_{P / W}=$ velocity of P relative to W - still water

- Course taken by P is direction of $V_{P / W}$
- Motion in the air:

$$
V_{w}=\text { true velocity of wind or air }
$$

$V_{P / W}=$ velocity of P relative to W - still wind/air

- Course take by P is direction of $V_{P / W}$

$$
V_{P / Q}=V_{P}-V_{Q}
$$

14. MATRICES

- Order of a matrix: a matrix with m rows and n columns, Order $=m \times n$
- Adding/subtracting matrices: add/subtract each corresponding element
- Scalar multiplication: to multiply a matrix by k, multiply each element by k
- Multiplying matrices: multiply row by column
- Identity matric:

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad I A=A \text { and } A I=I
$$

- Calculating the determinant:

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad|A|=(a d-b c)
$$

- Inverse of a $\mathbf{2}$ by 2 matrix:
- Switch leading diagonal, negate secondary diagonal
- Multiply by $\frac{1}{|A|}$

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

$A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right) \quad A^{-1} A=A A^{-1}=I$

- Solving simultaneous linear equations by a matrix method:

$$
a x+b y=h \quad c x+d y=k
$$

- Equation can be written as:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{h}{k}
$$

- Rearrange it and solve:

$$
\binom{x}{y}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)\binom{h}{k}
$$

- For a matrix to give unique solutions:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \neq 0
$$

15. DIFFERENTIATION \& INTEGRATION

15.1 Differentiation

FUNCTION	1ST DERIVATIVE	$\mathbf{2}^{\text {ND }}$ DERIVATIVE
$y=x^{n}$	$\frac{d y}{d x}=n x^{n-1}$	$\frac{d^{2} y}{d x^{2}}=n(n-1) x^{n-2}$

INCREASING FUNCTION	DECREASING FUNCTION
$\frac{d y}{d x}>0$	$\frac{d y}{d x}<0$

- Stationary point: equate first derivative to zero

$$
\frac{d y}{d x}=0
$$

- $2^{\text {nd }}$ Derivative: finds nature of the stationary point - If value $+\mathrm{ve}, \mathrm{min}$. point \rightarrow negative stationary point - If value -ve, max. point \rightarrow positive stationary point
- Chain rule:

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}
$$

- Product rule:

$$
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

- Quotient rule:

$$
\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

Special Differentials

$$
\begin{gathered}
\frac{d y}{d x} \text { of } \sin a x=a \cos a x \\
\frac{d y}{d x} \text { of } \cos a x=-a \sin a x \\
\frac{d y}{d x} \text { of } \tan a x=a \sec ^{2} a x \\
\frac{d y}{d x} \text { of } e^{a x+b}=a e^{a x+b} \\
\frac{d y}{d x} \text { of } \ln x=\frac{1}{x} \\
\frac{d y}{d x} \text { of } \ln (f(x))=\frac{f^{\prime}(x)}{f(x)}
\end{gathered}
$$

- Related rates of change:

- If x and y are related by the equation $y=f(x)$, then the rates of change $\frac{d x}{d t}$ and $\frac{d y}{d t}$ are related by:

$$
\frac{d y}{d t}=\frac{d y}{d x} \times \frac{d x}{d t}
$$

- Small changes:

- If $y=f(x)$ and small change δx in x causes a small change δy in y, then

$$
\delta y \approx\left(\frac{d y}{d x}\right)_{x=k} \times \delta x
$$

15.2 Integration

$$
\begin{gathered}
\int a x^{n}=a \frac{x^{n+1}}{(n+1)}+c \\
\int(a x+b)^{n}=\frac{(a x+b)^{n+1}}{a(n+1)}+c
\end{gathered}
$$

- Definite integral: substitute coordinates/values \& find c
- Integrating by parts:

$$
\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x
$$

- What to make u : LATE
- To find area under the graph (curve and x-axis):
- Integrate curve
- Substitute boundaries of x
- Subtract one from another (ignore c)

$$
\int_{c}^{d} y d x
$$

- To find volume under the graph (curve and x-axis):
- Square the function
- Integrate and substitute
- Multiply by π

$$
\int_{c}^{d} \pi y^{2} d x
$$

- To find area/volume between curve and y-axis:
- Make x subject of the formula
- Follow above method using y-values instead of x values

Special Integrals

$\int \sin (a x+b)=-\frac{1}{a} \cos (a x+b)+c$
$\int \cos (a x+b)=\frac{1}{a} \sin (a x+b)+c$
$\int \sec ^{2}(a x+b)=\frac{1}{a} \tan (a x+b)+c$
$\int \frac{1}{a x+b}=\frac{1}{a} \ln \|a x+b\|+c$
$\int e^{a x+b}=\frac{1}{a} e^{a x+b}+c$

15.3 Kinematics

- Particle at instantaneous rest, $v=0$
- Maximum displacement from origin, $v=0$
- Maximum velocity, $a=0$

QE IROSE AOD. MATHES//ODOB

[^0]: SUMMARIZED NOTES ON THE EXTENDED SYLLABUS

