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xi

A great discovery solves a great problem but there is a grain of discovery in the
solution of any problem. Your problem may be modest; but if it challenges your
curiosity and brings into play your inventive faculties, and if you solve it by your
own means, you may experience the tension and enjoy the triumph of discovery.

G E O R G E P O L Y A

The art of teaching, Mark Van Doren said, is the art of assisting discovery. I have tried to
write a book that assists students in discovering calculus—both for its practical power and
its surprising beauty. In this edition, as in the first six editions, I aim to convey to the stu-
dent a sense of the utility of calculus and develop technical competence, but I also strive
to give some appreciation for the intrinsic beauty of the subject. Newton undoubtedly
experienced a sense of triumph when he made his great discoveries. I want students to
share some of that excitement.

The emphasis is on understanding concepts. I think that nearly everybody agrees that
this should be the primary goal of calculus instruction. In fact, the impetus for the current
calculus reform movement came from the Tulane Conference in 1986, which formulated
as their first recommendation: 

Focus on conceptual understanding.

I have tried to implement this goal through the Rule of Three: “Topics should be presented
geometrically, numerically, and algebraically.” Visualization, numerical and graphical exper-
imentation, and other approaches have changed how we teach conceptual reasoning in fun-
damental ways. The Rule of Three has been expanded to become the Rule of Four by
emphasizing the verbal, or descriptive, point of view as well.

In writing the seventh edition my premise has been that it is possible to achieve con-
ceptual understanding and still retain the best traditions of traditional calculus. The book
contains elements of reform, but within the context of a traditional curriculum.

I have written several other calculus textbooks that might be preferable for some instruc-
tors. Most of them also come in single variable and multivariable versions.

■ Calculus: Early Transcendentals, Seventh Edition, Hybrid Version, is similar to the
present textbook in content and coverage except that all end-of-section exercises are
available only in Enhanced WebAssign. The printed text includes all end-of-chapter
review material.

■ Calculus, Seventh Edition, is similar to the present textbook except that the exponen-
tial, logarithmic, and inverse trigonometric functions are covered in the second
semester.

Alternative Versions

Preface
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■ Calculus, Seventh Edition, Hybrid Version, is similar to Calculus, Seventh Edition, in
content and coverage except that all end-of-section exercises are available only in
Enhanced WebAssign. The printed text includes all end-of-chapter review material.

■ Essential Calculus is a much briefer book (800 pages), though it contains almost all
of the topics in Calculus, Seventh Edition. The relative brevity is achieved through
briefer exposition of some topics and putting some features on the website.

■ Essential Calculus: Early Transcendentals resembles Essential Calculus, but the
exponential, logarithmic, and inverse trigonometric functions are covered in Chapter 3.

■ Calculus: Concepts and Contexts, Fourth Edition, emphasizes conceptual understand-
ing even more strongly than this book. The coverage of topics is not encyclopedic 
and the material on transcendental functions and on parametric equations is woven
throughout the book instead of being treated in separate chapters. 

■ Calculus: Early Vectors introduces vectors and vector functions in the first semester
and integrates them throughout the book. It is suitable for students taking Engineering
and Physics courses concurrently with calculus.

■ Brief Applied Calculus is intended for students in business, the social sciences, and
the life sciences.

The changes have resulted from talking with my colleagues and students at the University
of Toronto and from reading journals, as well as suggestions from users and reviewers.
Here are some of the many improvements that I’ve incorporated into this edition:
■ Some material has been rewritten for greater clarity or for better motivation. See, for

instance, the introduction to maximum and minimum values on page 274, the intro-
duction to series on page 703, and the motivation for the cross product on page 808.

■ New examples have been added (see Example 4 on page 1021 for instance). And the
solutions to some of the existing examples have been amplified. A case in point: I
added details to the solution of Example 2.3.11 because when I taught Section 2.3
from the sixth edition I realized that students need more guidance when setting up
inequalities for the Squeeze Theorem.

■ The art program has been revamped: New figures have been incorporated and a sub-
stantial percentage of the existing figures have been redrawn.

■ The data in examples and exercises have been updated to be more timely.
■ Three new projects have been added: The Gini Index (page 429) explores how to

measure income distribution among inhabitants of a given country and is a nice appli-
cation of areas between curves. (I thank Klaus Volpert for suggesting this project.)
Families of Implicit Curves (page 217) investigates the changing shapes of implicitly
defined curves as parameters in a family are varied. Families of Polar Curves (page
664) exhibits the fascinating shapes of polar curves and how they evolve within a
family.

■ The section on the surface area of the graph of a function of two variables has been
restored as Section 15.6 for the convenience of instructors who like to teach it after
double integrals, though the full treatment of surface area remains in Chapter 16. 

What’s New in the Seventh Edition?
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■ I continue to seek out examples of how calculus applies to so many aspects of the 
real world. On page 909 you will see beautiful images of the earth’s magnetic field
strength and its second vertical derivative as calculated from Laplace’s equation. I
thank Roger Watson for bringing to my attention how this is used in geophysics and
mineral exploration.

■ More than 25% of the exercises in each chapter are new. Here are some of my
favorites: 1.6.58, 2.6.51, 2.8.13–14, 3.3.56, 3.4.67, 3.5.69–72, 3.7.22, 4.3.86, 
5.2.51–53, 6.4.30, 11.2.49–50, 11.10.71–72, 12.1.44, 12.4.43–44, and Problems 4, 
5, and 8 on pages 837–38.

■ The media and technology to support the text have been enhanced to give professors
greater control over their course, to provide extra help to deal with the varying levels
of student preparedness for the calculus course, and to improve support for conceptual
understanding. New Enhanced WebAssign features including a customizable Cengage
YouBook, Just in Time review, Show Your Work, Answer Evaluator, Personalized
Study Plan, Master Its, solution videos, lecture video clips (with associated questions),
and Visualizing Calculus (TEC animations with associated questions) have been
developed to facilitate improved student learning and flexible classroom teaching.

■ Tools for Enriching Calculus (TEC) has been completely redesigned and is accessible
in Enhanced WebAssign, CourseMate, and PowerLecture. Selected Visuals and 
Modules are available at www.stewartcalculus.com.

CONCEPTUAL EXERCISES The most important way to foster conceptual understanding is through the problems that
we assign. To that end I have devised various types of problems. Some exercise sets begin
with requests to explain the meanings of the basic concepts of the section. (See, for
instance, the first few exercises in Sections 2.2, 2.5, 11.2, 14.2, and 14.3.) Similarly, all the
review sections begin with a Concept Check and a True-False Quiz. Other exercises test
conceptual understanding through graphs or tables (see Exercises 2.7.17, 2.8.35–40,
2.8.43–46, 9.1.11–13, 10.1.24–27, 11.10.2, 13.2.1–2, 13.3.33–39, 14.1.1–2, 14.1.32–42,
14.3.3–10, 14.6.1–2, 14.7.3–4, 15.1.5–10, 16.1.11–18, 16.2.17–18, and 16.3.1–2).

Another type of exercise uses verbal description to test conceptual understanding (see
Exercises 2.5.10, 2.8.58, 4.3.63–64, and 7.8.67). I particularly value problems that com-
bine and compare graphical, numerical, and algebraic approaches (see Exercises 2.6.39–
40, 3.7.27, and 9.4.2).

GRADED EXERCISE SETS Each exercise set is carefully graded, progressing from basic conceptual exercises and skill-
development problems to more challenging problems involving applications and proofs.

REAL-WORLD DATA My assistants and I spent a great deal of time looking in libraries, contacting companies and
government agencies, and searching the Internet for interesting real-world data to intro-
duce, motivate, and illustrate the concepts of calculus. As a result, many of the examples
and exercises deal with functions defined by such numerical data or graphs. See, for
instance, Figure 1 in Section 1.1 (seismograms from the Northridge earthquake), Exercise
2.8.36 (percentage of the population under age 18), Exercise 5.1.16 (velocity of the space 

Technology Enhancements

Features
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shuttle Endeavour), and Figure 4 in Section 5.4 (San Francisco power consumption).
Functions of two variables are illustrated by a table of values of the wind-chill index as a
function of air temperature and wind speed (Example 2 in Section 14.1). Partial derivatives
are introduced in Section 14.3 by examining a column in a table of values of the heat index
(perceived air temperature) as a function of the actual temperature and the relative humid-
ity. This example is pursued further in connection with linear approximations (Example 3
in Section 14.4). Directional derivatives are introduced in Section 14.6 by using a temper-
ature contour map to estimate the rate of change of temperature at Reno in the direction of
Las Vegas. Double integrals are used to estimate the average snowfall in Colorado on
December 20–21, 2006 (Example 4 in Section 15.1). Vector fields are introduced in Sec-
tion 16.1 by depictions of actual velocity vector fields showing San Francisco Bay wind
patterns.

PROJECTS One way of involving students and making them active learners is to have them work (per-
haps in groups) on extended projects that give a feeling of substantial accomplishment
when completed. I have included four kinds of projects: Applied Projects involve applica-
tions that are designed to appeal to the imagination of students. The project after Section
9.3 asks whether a ball thrown upward takes longer to reach its maximum height or to fall
back to its original height. (The answer might surprise you.) The project after Section 14.8
uses Lagrange multipliers to determine the masses of the three stages of a rocket so as to
minimize the total mass while enabling the rocket to reach a desired velocity. Laboratory
Projects involve technology; the one following Section 10.2 shows how to use Bézier
curves to design shapes that represent letters for a laser printer. Writing Projects ask stu-
dents to compare present-day methods with those of the founders of calculus—Fermat’s
method for finding tangents, for instance. Suggested references are supplied. Discovery
Projects anticipate results to be discussed later or encourage discovery through pattern
recognition (see the one following Section 7.6). Others explore aspects of geometry: tetra-
hedra (after Section 12.4), hyperspheres (after Section 15.7), and intersections of three
cylinders (after Section 15.8). Additional projects can be found in the Instructor’s Guide
(see, for instance, Group Exercise 5.1: Position from Samples).

PROBLEM SOLVING Students usually have difficulties with problems for which there is no single well-defined
procedure for obtaining the answer. I think nobody has improved very much on George
Polya’s four-stage problem-solving strategy and, accordingly, I have included a version of
his problem-solving principles following Chapter 1. They are applied, both explicitly and
implicitly, throughout the book. After the other chapters I have placed sections called
Problems Plus, which feature examples of how to tackle challenging calculus problems. In
selecting the varied problems for these sections I kept in mind the following advice from
David Hilbert: “A mathematical problem should be difficult in order to entice us, yet not
inaccessible lest it mock our efforts.” When I put these challenging problems on assign-
ments and tests I grade them in a different way. Here I reward a student significantly for
ideas toward a solution and for recognizing which problem-solving principles are relevant.

TECHNOLOGY The availability of technology makes it not less important but more important to clearly
understand the concepts that underlie the images on the screen. But, when properly used,
graphing calculators and computers are powerful tools for discovering and understanding
those concepts. This textbook can be used either with or without technology and I use two
special symbols to indicate clearly when a particular type of machine is required. The icon
; indicates an exercise that definitely requires the use of such technology, but that is not
to say that it can’t be used on the other exercises as well. The symbol is reserved for
problems in which the full resources of a computer algebra system (like Derive, Maple,
Mathematica, or the TI-89/92) are required. But technology doesn’t make pencil and paper

CAS
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PREFACE xv

obsolete. Hand calculation and sketches are often preferable to technology for illustrating
and reinforcing some concepts. Both instructors and students need to develop the ability
to decide where the hand or the machine is appropriate.

TEC is a companion to the text and is intended to enrich and complement its contents. (It
is now accessible in Enhanced WebAssign, CourseMate, and PowerLecture. Selected
Visuals and Modules are available at www.stewartcalculus.com.) Developed by Harvey
Keynes, Dan Clegg, Hubert Hohn, and myself, TEC uses a discovery and exploratory
approach. In sections of the book where technology is particularly appropriate, marginal
icons direct students to TEC modules that provide a laboratory environment in which they
can explore the topic in different ways and at different levels. Visuals are animations of
figures in text; Modules are more elaborate activities and include exercises. Instruc-
tors can choose to become involved at several different levels, ranging from simply
encouraging students to use the Visuals and Modules for independent exploration, to
assigning specific exercises from those included with each Module, or to creating addi-
tional exercises, labs, and projects that make use of the Visuals and Modules.

HOMEWORK HINTS Homework Hints presented in the form of questions try to imitate an effective teaching
assistant by functioning as a silent tutor. Hints for representative exercises (usually odd-
numbered) are included in every section of the text, indicated by printing the exercise 
number in red. They are constructed so as not to reveal any more of the actual solution than
is minimally necessary to make further progress, and are available to students at 
stewartcalculus.com and in CourseMate and Enhanced WebAssign.

ENHANCED WE BAS S I G N Technology is having an impact on the way homework is assigned to students, particularly
in large classes. The use of online homework is growing and its appeal depends on ease of
use, grading precision, and reliability. With the seventh edition we have been working with
the calculus community and WebAssign to develop a more robust online homework sys-
tem. Up to 70% of the exercises in each section are assignable as online homework, includ-
ing free response, multiple choice, and multi-part formats.

The system also includes Active Examples, in which students are guided in step-by-step
tutorials through text examples, with links to the textbook and to video solutions. New
enhancements to the system include a customizable eBook, a Show Your Work feature, 
Just in Time review of precalculus prerequisites, an improved Assignment Editor, and an
Answer Evaluator that accepts more mathematically equivalent answers and allows for
homework grading in much the same way that an instructor grades.

www.stewartcalculus.com This site includes the following.
■ Homework Hints 
■ Algebra Review
■ Lies My Calculator and Computer Told Me
■ History of Mathematics, with links to the better historical websites
■ Additional Topics (complete with exercise sets): Fourier Series, Formulas for the

Remainder Term in Taylor Series, Rotation of Axes
■ Archived Problems (Drill exercises that appeared in previous editions, together with

their solutions)
■ Challenge Problems (some from the Problems Plus sections from prior editions)
■ Links, for particular topics, to outside web resources
■ Selected Tools for Enriching Calculus (TEC) Modules and Visuals

TOOLS FOR 
ENRICHING™ CALCULUS
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Diagnostic Tests The book begins with four diagnostic tests, in Basic Algebra, Analytic Geometry, Func-
tions, and Trigonometry.

A Preview of Calculus This is an overview of the subject and includes a list of questions to motivate the study of
calculus.

1  Functions and Models From the beginning, multiple representations of functions are stressed: verbal, numerical,
visual, and algebraic. A discussion of mathematical models leads to a review of the stan-
dard functions, including exponential and logarithmic functions, from these four points of
view.

2   Limits and Derivatives The material on limits is motivated by a prior discussion of the tangent and velocity prob-
lems. Limits are treated from descriptive, graphical, numerical, and algebraic points of
view. Section 2.4, on the precise definition of a limit, is an optional section. Sections
2.7 and 2.8 deal with derivatives (especially with functions defined graphically and numer-
ically) before the differentiation rules are covered in Chapter 3. Here the examples and
exercises explore the meanings of derivatives in various contexts. Higher derivatives are
introduced in Section 2.8.

3  Differentiation Rules All the basic functions, including exponential, logarithmic, and inverse trigonometric func-
tions, are differentiated here. When derivatives are computed in applied situations, students
are asked to explain their meanings. Exponential growth and decay are covered in this 
chapter.

4  Applications of Differentiation The basic facts concerning extreme values and shapes of curves are deduced from the
Mean Value Theorem. Graphing with technology emphasizes the interaction between cal-
culus and calculators and the analysis of families of curves. Some substantial optimization
problems are provided, including an explanation of why you need to raise your head 42°
to see the top of a rainbow.

5  Integrals The area problem and the distance problem serve to motivate the definite integral, with
sigma notation introduced as needed. (Full coverage of sigma notation is provided in
Appendix E.) Emphasis is placed on explaining the meanings of integrals in various con-
texts and on estimating their values from graphs and tables.

6  Applications of Integration Here I present the applications of integration—area, volume, work, average value—that
can reasonably be done without specialized techniques of integration. General methods are
emphasized. The goal is for students to be able to divide a quantity into small pieces, esti-
mate with Riemann sums, and recognize the limit as an integral. 

7  Techniques of Integration All the standard methods are covered but, of course, the real challenge is to be able to 
recognize which technique is best used in a given situation. Accordingly, in Section 7.5, I
present a strategy for integration. The use of computer algebra systems is discussed in 
Section 7.6.

Here are the applications of integration—arc length and surface area—for which it is use-
ful to have available all the techniques of integration, as well as applications to biology,
economics, and physics (hydrostatic force and centers of mass). I have also included a sec-
tion on probability. There are more applications here than can realistically be covered in a
given course. Instructors should select applications suitable for their students and for
which they themselves have enthusiasm.

Content

!-"

8  Further Applications 
of Integration
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9  Differential Equations Modeling is the theme that unifies this introductory treatment of differential equations.
Direction fields and Euler’s method are studied before separable and linear equations are
solved explicitly, so that qualitative, numerical, and analytic approaches are given equal
consideration. These methods are applied to the exponential, logistic, and other models for
population growth. The first four or five sections of this chapter serve as a good introduc-
tion to first-order differential equations. An optional final section uses predator-prey mod-
els to illustrate systems of differential equations.

This chapter introduces parametric and polar curves and applies the methods of calculus
to them. Parametric curves are well suited to laboratory projects; the three presented here
involve families of curves and Bézier curves. A brief treatment of conic sections in polar
coordinates prepares the way for Kepler’s Laws in Chapter 13.

11  Infinite Sequences and Series The convergence tests have intuitive justifications (see page 714) as well as formal proofs.
Numerical estimates of sums of series are based on which test was used to prove conver-
gence. The emphasis is on Taylor series and polynomials and their applications to physics.
Error estimates include those from graphing devices.

The material on three-dimensional analytic geometry and vectors is divided into two chap-
ters. Chapter 12 deals with vectors, the dot and cross products, lines, planes, and surfaces.

13  Vector Functions This chapter covers vector-valued functions, their derivatives and integrals, the length and
curvature of space curves, and velocity and acceleration along space curves, culminating
in Kepler’s laws.

14  Partial Derivatives Functions of two or more variables are studied from verbal, numerical, visual, and alge-
braic points of view. In particular, I introduce partial derivatives by looking at a specific
column in a table of values of the heat index (perceived air temperature) as a function of
the actual temperature and the relative humidity. 

15  Multiple Integrals Contour maps and the Midpoint Rule are used to estimate the average snowfall and average
temperature in given regions. Double and triple integrals are used to compute probabilities,
surface areas, and (in projects) volumes of hyperspheres and volumes of intersections of
three cylinders. Cylindrical and spherical coordinates are introduced in the context of eval-
uating triple integrals.

16  Vector Calculus Vector fields are introduced through pictures of velocity fields showing San Francisco Bay
wind patterns. The similarities among the Fundamental Theorem for line integrals, Green’s
Theorem, Stokes’ Theorem, and the Divergence Theorem are emphasized.

Since first-order differential equations are covered in Chapter 9, this final chapter deals
with second-order linear differential equations, their application to vibrating springs and
electric circuits, and series solutions.

Calculus, Early Transcendentals, Seventh Edition, is supported by a complete set of ancil-
laries developed under my direction. Each piece has been designed to enhance student
understanding and to facilitate creative instruction. With this edition, new media and tech-
nologies have been developed that help students to visualize calculus and instructors to
customize content to better align with the way they teach their course. The tables on pages
xxi–xxii describe each of these ancillaries.

10  Parametric Equations 
and Polar Coordinates

12  Vectors and 
The Geometry of Space

17  Second-Order 
Differential Equations

Ancillaries

97909_FM_FM_pi-xxviii.qk_97909_FM_FM_pi-xxviii  10/15/10  10:53 AM  Page xvii

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).  
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xviii PREFACE

The preparation of this and previous editions has involved much time spent reading the
reasoned (but sometimes contradictory) advice from a large number of astute reviewers. 
I greatly appreciate the time they spent to understand my motivation for the approach taken.
I have learned something from each of them.
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Ancillaries for Instructors

PowerLecture
ISBN 0-8400-5421-1

This comprehensive DVD contains all art from the text in both
jpeg and PowerPoint formats, key equations and tables from the
text, complete pre-built PowerPoint lectures, an electronic ver-
sion of the Instructor’s Guide, Solution Builder, ExamView test-
ing software, Tools for Enriching Calculus, video instruction,
and JoinIn on TurningPoint clicker content.

Instructor’s Guide
by Douglas Shaw
ISBN 0-8400-5418-1

Each section of the text is discussed from several viewpoints.
The Instructor’s Guide contains suggested time to allot, points
to stress, text discussion topics, core materials for lecture, work-
shop/discussion suggestions, group work exercises in a form
suitable for handout, and suggested homework assignments. An
electronic version of the Instructor’s Guide is available on the
PowerLecture DVD.

Complete Solutions Manual
Single Variable Early Transcendentals
By Daniel Anderson, Jeffery A. Cole, and Daniel Drucker
ISBN 0-8400-4936-6

Multivariable
By Dan Clegg and Barbara Frank
ISBN 0-8400-4947-1

Includes worked-out solutions to all exercises in the text.

Solution Builder
www.cengage.com /solutionbuilder

This online instructor database offers complete worked out solu-
tions to all exercises in the text. Solution Builder allows you to
create customized, secure solutions printouts (in PDF format)
matched exactly to the problems you assign in class.

Printed Test Bank
By William Steven Harmon
ISBN 0-8400-5419-X

Contains text-specific multiple-choice and free response test
items.

ExamView Testing
Create, deliver, and customize tests in print and online formats
with ExamView, an easy-to-use assessment and tutorial software.
ExamView contains hundreds of multiple-choice and free
response test items. ExamView testing is available on the Power-
Lecture DVD.

Ancillaries for Instructors and Students

Stewart Website
www.stewartcalculus.com

Contents: Homework Hints ■ Algebra Review ■ Additional
Topics ■ Drill exercises ■ Challenge Problems ■ Web Links ■

History of Mathematics ■ Tools for Enriching Calculus (TEC) 

Tools for Enriching™ Calculus
By James Stewart, Harvey Keynes, Dan Clegg, and 
developer Hu Hohn

Tools for Enriching Calculus (TEC) functions as both a power-
ful tool for instructors, as well as a tutorial environment in
which students can explore and review selected topics. The
Flash simulation modules in TEC include instructions, writ-
ten and audio explanations of the concepts, and exercises. 
TEC is accessible in CourseMate, WebAssign, and Power-
Lecture. Selected Visuals and Modules are available at 
www.stewartcalculus.com.

Enhanced WebAssign
www.webassign.net

WebAssign’s homework delivery system lets instructors deliver,
collect, grade, and record assignments via the web. Enhanced
WebAssign for Stewart’s Calculus now includes opportunities
for students to review prerequisite skills and content both at the
start of the course and at the beginning of each section. In addi-
tion, for selected problems, students can get extra help in the
form of “enhanced feedback” (rejoinders) and video solutions.
Other key features include: thousands of problems from Stew-
art’s Calculus, a customizable Cengage YouBook, Personal
Study Plans, Show Your Work, Just in Time Review, Answer
Evaluator, Visualizing Calculus animations and modules,
quizzes, lecture videos (with associated questions), and more!

Cengage Customizable YouBook
YouBook is a Flash-based eBook that is interactive and cus-
tomizable! Containing all the content from Stewart’s Calculus,
YouBook features a text edit tool that allows instructors to mod-
ify the textbook narrative as needed. With YouBook, instructors
can quickly re-order entire sections and chapters or hide any
content they don’t teach to create an eBook that perfectly
matches their syllabus. Instructors can further customize the
text by adding instructor-created or YouTube video links. 
Additional media assets include: animated figures, video clips,
highlighting, notes, and more! YouBook is available in
Enhanced WebAssign.

TEC

■ Electronic items ■ Printed items    (Table continues on page xxii.)
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CourseMate
www.cengagebrain.com

CourseMate is a perfect self-study tool for students, and
requires no set up from instructors. CourseMate brings course
concepts to life with interactive learning, study, and exam
preparation tools that support the printed textbook. CourseMate
for Stewart’s Calculus includes: an interactive eBook, Tools 
for Enriching Calculus, videos, quizzes, flashcards, and more! 
For instructors, CourseMate includes Engagement Tracker, a
first-of-its-kind tool that monitors student engagement.

Maple CD-ROM
Maple provides an advanced, high performance mathe-
matical computation engine with fully integrated numerics 
& symbolics, all accessible from a WYSIWYG technical docu-
ment environment. 

CengageBrain.com
To access additional course materials and companion resources,
please visit www.cengagebrain.com. At the CengageBrain.com
home page, search for the ISBN of your title (from the back
cover of your book) using the search box at the top of the page.
This will take you to the product page where free companion
resources can be found.

Ancillaries for Students

Student Solutions Manual
Single Variable Early Transcendentals
By Daniel Anderson, Jeffery A. Cole, and Daniel Drucker
ISBN 0-8400-4934-X

Multivariable
By Dan Clegg and Barbara Frank
ISBN 0-8400-4945-5

Provides completely worked-out solutions to all odd-numbered
exercises in the text, giving students a chance to check their
answers and ensure they took the correct steps to arrive at an
answer.

Study Guide
Single Variable Early Transcendentals
By Richard St. Andre
ISBN 0-8400-5420-3

Multivariable
By Richard St. Andre
ISBN 0-8400-5410-6

For each section of the text, the Study Guide provides students
with a brief introduction, a short list of concepts to master, as

well as summary and focus questions with explained answers.
The Study Guide also contains “Technology Plus” questions,
and multiple-choice “On Your Own” exam-style questions.

CalcLabs with Maple
Single Variable By Philip B. Yasskin and Robert Lopez
ISBN 0-8400-5811-X

Multivariable By Philip B. Yasskin and Robert Lopez
ISBN 0-8400-5812-8

CalcLabs with Mathematica
Single Variable By Selwyn Hollis
ISBN 0-8400-5814-4

Multivariable By Selwyn Hollis
ISBN 0-8400-5813-6

Each of these comprehensive lab manuals will help students
learn to use the technology tools available to them. CalcLabs
contain clearly explained exercises and a variety of labs and
projects to accompany the text.

A Companion to Calculus
By Dennis Ebersole, Doris Schattschneider, Alicia Sevilla, 
and Kay Somers
ISBN 0-495-01124-X

Written to improve algebra and problem-solving skills of stu-
dents taking a Calculus course, every chapter in this companion
is keyed to a calculus topic, providing conceptual background
and specific algebra techniques needed to understand and solve
calculus problems related to that topic. It is designed for calcu-
lus courses that integrate the review of precalculus concepts or
for individual use.

Linear Algebra for Calculus
by Konrad J. Heuvers, William P. Francis, John H. Kuisti, 
Deborah F. Lockhart, Daniel S. Moak, and Gene M. Ortner
ISBN 0-534-25248-6

This comprehensive book, designed to supplement the calculus
course, provides an introduction to and review of the basic
ideas of linear algebra.

■ Electronic items ■ Printed items    
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Reading a calculus textbook is different from reading a news-
paper or a novel, or even a physics book. Don’t be discouraged
if you have to read a passage more than once in order to under-
stand it. You should have pencil and paper and calculator at
hand to sketch a diagram or make a calculation.

Some students start by trying their homework problems and
read the text only if they get stuck on an exercise. I suggest that
a far better plan is to read and understand a section of the text
before attempting the exercises. In particular, you should look 
at the definitions to see the exact meanings of the terms. And
before you read each example, I suggest that you cover up the
solution and try solving the problem yourself. You’ll get a lot
more from looking at the solution if you do so.

Part of the aim of this course is to train you to think logically.
Learn to write the solutions of the exercises in a connected,
step-by-step fashion with explanatory sentences—not just a
string of disconnected equations or formulas.

The answers to the odd-numbered exercises appear at the
back of the book, in Appendix I. Some exercises ask for a verbal
explanation or interpretation or description. In such cases there
is no single correct way of expressing the answer, so don’t
worry that you haven’t found the definitive answer. In addition,
there are often several different forms in which to express a
numerical or algebraic answer, so if your answer differs from
mine, don’t immediately assume you’re wrong. For example, 
if the answer given in the back of the book is and you
obtain , then you’re right and rationalizing the
denominator will show that the answers are equivalent.

The icon ; indicates an exercise that definitely requires 
the use of either a graphing calculator or a computer with graph-
ing software. (Section 1.4 discusses the use of these graphing
devices and some of the pitfalls that you may encounter.) But
that doesn’t mean that graphing devices can’t be used to check
your work on the other exercises as well. The symbol is

1!(1 ! s2)
s2 " 1

CAS

reserved for problems in which the full resources of a computer
algebra system (like Derive, Maple, Mathematica, or the 
TI-89/92) are required.

You will also encounter the symbol | , which warns you
against committing an error. I have placed this symbol in the
margin in situations where I have observed that a large propor-
tion of my students tend to make the same mistake.

Tools for Enriching Calculus, which is a companion to this
text, is referred to by means of the symbol and can be
accessed in Enhanced WebAssign and CourseMate (selected
Visuals and Modules are available at www.stewartcalculus.com).
It directs you to modules in which you can explore aspects of
calculus for which the computer is particularly useful.

Homework Hints for representative exercises are indicated
by printing the exercise number in red: 5. These hints can be
found on stewartcalculus.com as well as Enhanced WebAssign
and CourseMate. The homework hints ask you questions that
allow you to make progress toward a solution without actually
giving you the answer. You need to pursue each hint in an active
manner with pencil and paper to work out the details. If a partic-
ular hint doesn’t enable you to solve the problem, you can click
to reveal the next hint. 

I recommend that you keep this book for reference purposes
after you finish the course. Because you will likely forget some
of the specific details of calculus, the book will serve as a 
useful reminder when you need to use calculus in subsequent
courses. And, because this book contains more material than
can be covered in any one course, it can also serve as a valu-
able resource for a working scientist or engineer.

Calculus is an exciting subject, justly considered to be one 
of the greatest achievements of the human intellect. I hope you
will discover that it is not only useful but also intrinsically
beautiful.

JAMES STEWART

TEC

xxiii

To the Student
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Diagnostic Tests

Success in calculus depends to a large extent on knowledge of the mathematics
that precedes calculus: algebra, analytic geometry, functions, and trigonometry. 
The following tests are intended to diagnose weaknesses that you might have in
these areas. After taking each test you can check your answers against the given
answers and, if necessary, refresh your skills by referring to the review materials
that are provided.

Diagnostic Test: AlgebraA

1. Evaluate each expression without using a calculator.
(a) (b) (c)

(d) (e) (f )

2. Simplify each expression. Write your answer without negative exponents.
(a)
(b)

(c)

3. Expand and simplify.

(a) (b)

(c) (d)

(e)

4. Factor each expression.
(a) (b)
(c) (d)
(e) (f )

5. Simplify the rational expression.

(a) (b)

(c) (d)

!!3"4 !34 3!4

523

521 #2
3$!2

16!3%4

s200 ! s32
!3a3b3"!4ab2"2

#3x 3%2y 3

x 2y!1%2$!2

3!x " 6" " 4!2x ! 5" !x " 3"!4x ! 5"

(sa " sb )(sa ! sb ) !2x " 3"2

!x " 2"3

4x 2 ! 25 2x 2 " 5x ! 12
x 3 ! 3x 2 ! 4x " 12 x 4 " 27x
3x 3%2 ! 9x 1%2 " 6x!1%2 x 3y ! 4xy

x 2 " 3x " 2
x 2 ! x ! 2

2x 2 ! x ! 1
x 2 ! 9

!
x " 3

2x " 1

x 2

x 2 ! 4
!

x " 1
x " 2

y
x

!
x
y

1
y

!
1
x

xxiv
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DIAGNOSTIC TESTS xxv

6. Rationalize the expression and simplify.

(a) (b)

7. Rewrite by completing the square.
(a) (b)

8. Solve the equation. (Find only the real solutions.)

(a) (b)

(c) (d)

(e) (f )
(g)

9. Solve each inequality. Write your answer using interval notation.
(a) (b)
(c) (d)

(e)

10. State whether each equation is true or false.
(a) (b)

(c) (d)

(e) (f )

s10
s5 ! 2

s4 " h ! 2
h

x 2 " x " 1 2x 2 ! 12x " 11

x " 5 ! 14 ! 1
2 x

2x
x " 1

!
2x ! 1

x
x2 ! x ! 12 ! 0 2x 2 " 4x " 1 ! 0

x 4 ! 3x 2 " 2 ! 0 3! x ! 4 ! ! 10
2x"4 ! x#!1$2 ! 3s4 ! x ! 0

!4 # 5 ! 3x $ 17 x 2 # 2x " 8
x"x ! 1#"x " 2# % 0 ! x ! 4 ! # 3
2x ! 3
x " 1

$ 1

" p " q#2 ! p2 " q 2 sab ! sa sb

sa2 " b2 ! a " b
1 " TC

C
! 1 " T

1
x ! y

!
1
x

!
1
y

1$x
a$x ! b$x

!
1

a ! b

1. (a) (b) (c)
(d) (e) (f )

2. (a) (b) (c)

3. (a) (b)
(c) (d)
(e)

4. (a) (b)
(c) (d)
(e) (f )

5. (a) (b)

(c) (d)

81 !81 1
81

25 9
4

1
8

6s2 48a5b7 x
9y7

11x ! 2 4x 2 " 7x ! 15
a ! b 4x 2 " 12x " 9
x 3 " 6x 2 " 12x " 8

"2x ! 5#"2x " 5# "2x ! 3#"x " 4#
"x ! 3#"x ! 2#"x " 2# x"x " 3#"x 2 ! 3x " 9#
3x!1$2"x ! 1#"x ! 2# xy"x ! 2#"x " 2#

x " 2
x ! 2

x ! 1
x ! 3

1
x ! 2

!"x " y#

6. (a) (b)

7. (a) (b)  

8. (a) (b) (c)
(d) (e) (f )
(g)

9. (a) (b)
(c) (d)
(e)

10. (a) False (b) True (c) False
(d) False (e) False (f ) True

6 1 !3, 4
!1 & 1

2s2 &1, &s2 2
3, 22

3
12
5

%!4, 3# "!2, 4#
"!2, 0# ! "1, '# "1, 7#
"!1, 4&

5s2 " 2s10
1

s4 " h " 2

(x " 1
2)2

" 3
4 2"x ! 3#2 ! 7

Answers to Diagnostic Test A: Algebra

If you have had difficulty with these problems, you may wish to consult  
the Review of Algebra on the website www.stewartcalculus.com

97909_FM_FM_pi-xxviii.qk_97909_FM_FM_pi-xxviii  10/15/10  10:53 AM  Page xxv

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).  
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.stewartcalculus.com


xxvi DIAGNOSTIC TESTS

1. Find an equation for the line that passes through the point and
(a) has slope 
(b) is parallel to the -axis
(c) is parallel to the -axis
(d) is parallel to the line 

2. Find an equation for the circle that has center and passes through the point .

3. Find the center and radius of the circle with equation .

4. Let and be points in the plane.
(a) Find the slope of the line that contains and .
(b) Find an equation of the line that passes through and . What are the intercepts?
(c) Find the midpoint of the segment .
(d) Find the length of the segment .
(e) Find an equation of the perpendicular bisector of .
(f ) Find an equation of the circle for which is a diameter.

5. Sketch the region in the -plane defined by the equation or inequalities.

(a) (b)

(c) (d)

(e) (f )

!2, !5"
!3

x
y

2x ! 4y ! 3

!!1, 4" !3, !2"

x 2 " y2 ! 6x " 10y " 9 ! 0

A!!7, 4" B!5, !12"
A B

A B
AB

AB
AB

AB

xy

!1 # y # 3 # x # $ 4 and # y # $ 2

y $ 1 ! 1
2 x y % x 2 ! 1

x 2 " y 2 $ 4 9x 2 " 16y 2 ! 144

Diagnostic Test: Analytic GeometryB

1. (a) (b)
(c) (d)

2.

3. Center , radius 5

4. (a)
(b) ; -intercept , -intercept 
(c)
(d)
(e)
(f )

y ! !3x " 1 y ! !5
x ! 2 y ! 1

2 x ! 6

!x " 1"2 " !y ! 4"2 ! 52

!3, !5"

!4
3

4x " 3y " 16 ! 0 x !4 y !16
3

!!1, !4"
20
3x ! 4y ! 13
!x " 1"2 " !y " 4"2 ! 100

5.

y

x1 2
0

y

x0

y

x0 4

3

_1

2

y

x
0

y

x0 4_4

y

x0 2

1

(a) (b) (c)

(d) (e) (f)

_1

3
2

_2

y=≈-1

≈+¥=4

 

y=1-   x1
2

Answers to Diagnostic Test B: Analytic Geometry

If you have had difficulty with these problems, you may wish to 
consult the review of analytic geometry in Appendixes B and C.
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DIAGNOSTIC TESTS xxvii

1. The graph of a function is given at the left.
(a) State the value of .
(b) Estimate the value of .
(c) For what values of is ?
(d) Estimate the values of such that .
(e) State the domain and range of .

2. If , evaluate the difference quotient and simplify your answer.

3. Find the domain of the function.

(a) (b) (c)

4. How are graphs of the functions obtained from the graph of ?
(a) (b) (c)

5. Without using a calculator, make a rough sketch of the graph.
(a) (b) (c)
(d) (e) (f )
(g) (h)

6. Let 

(a) Evaluate and . (b) Sketch the graph of .

7. If and , find each of the following functions.
(a) (b) (c)

f
f !!1"

f !2"
x f !x" ! 2

x f !x" ! 0
f

f !x" ! x 3 f !2 " h" ! f !2"
h

f !x" !
2x " 1

x2 " x ! 2
t!x" !

s3 x
x 2 " 1

h!x" ! s4 ! x " sx 2 ! 1

f
y ! !f !x" y ! 2 f !x" ! 1 y ! f !x ! 3" " 2

y ! x 3 y ! !x " 1"3 y ! !x ! 2"3 " 3
y ! 4 ! x 2 y ! sx y ! 2sx
y ! !2x y ! 1 " x!1

f !x" ! #1 ! x 2

2x " 1
if x # 0
if x $ 0

f !!2" f !1" f

f !x" ! x 2 " 2x ! 1 t!x" ! 2x ! 3
f ! t t ! f t ! t ! t

Diagnostic Test: FunctionsC

y

0 x

1

1

FIGURE FOR PROBLEM 1

1. (a) (b) 2.8
(c) (d)
(e)

2.

3. (a)
(b)
(c)

4. (a) Reflect about the -axis
(b) Stretch vertically by a factor of 2, then shift 1 unit downward
(c) Shift 3 units to the right and 2 units upward

5.

!2
!3, 1 !2.5, 0.3
$!3, 3% , $!2, 3%

12 " 6h " h2

!!%, !2" ! !!2, 1" ! !1, %"
!!%, %"
!!%, !1% ! $1, 4%

x

y

x0

(a)

1

1

y(b)

x0

1

_1

(c) y

x0

(2, 3)

6. (a) 7. (a)
(b) (b)

(c)

y(d)

x0

4

2

(e) y

x0 1

(f ) y

x0 1

(g) y

x
0

1_1

y(h)

x0

1

1

!3, 3 ! f ! t"!x" ! 4x 2 ! 8x " 2
y

x0_1

1

!t ! f "!x" ! 2x 2 " 4x ! 5
!t ! t ! t"!x" ! 8x ! 21

Answers to Diagnostic Test C: Functions

If you have had difficulty with these problems, you should look at Sections 1.1–1.3 of this book.
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xxviii DIAGNOSTIC TESTS

1. Convert from degrees to radians.
(a) (b)

2. Convert from radians to degrees.
(a) (b)

3. Find the length of an arc of a circle with radius 12 cm if the arc subtends a central angle of
.

4. Find the exact values.
(a) (b) (c)

5. Express the lengths and in the figure in terms of .

6. If and , where and lie between and , evaluate .

7. Prove the identities.
(a)

(b)

8. Find all values of such that and .

9. Sketch the graph of the function without using a calculator.

300! "18!

5#!6 2

30!

tan"#!3# sin"7#!6# sec"5#!3#

a b $

sin x ! 1
3 sec y ! 5

4 x y 0 #% 2 sin"x & y#

tan $  sin $ & cos $ ! sec $
2 tan x

1 & tan2x
! sin 2x

x sin 2x ! sin x 0 ' x ' 2#

y ! 1 & sin 2x

Diagnostic Test: TrigonometryD

a

¨
b

24

FIGURE FOR PROBLEM 5

If you have had difficulty with these problems, you should look at Appendix D of this book.

1. (a) (b)

2. (a) (b)

3.

4. (a) (b) (c)

5. (a) (b)

"#!105#!3

360!!# $ 114.6!150!

2# cm

2"1
2s3

24 cos $24 sin $

6.

8.

9.

1
15 (4 & 6s2 )
0, #!3, #, 5#!3, 2#

_π π x0

2
y

Answers to Diagnostic Test D: Trigonometry
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A Preview of Calculus

Calculus is fundamentally different from the mathematics that you have studied previously: calculus 
is less static and more dynamic. It is concerned with change and motion; it deals with quantities that
approach other quantities. For that reason it may be useful to have an overview of the subject before
beginning its intensive study. Here we give a glimpse of some of the main ideas of calculus by showing
how the concept of a limit arises when we attempt to solve a variety of problems.
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By the time you finish this course, you will be able to estimate the
number of laborers needed to build a pyramid, explain the forma-
tion and location of rainbows, design a roller coaster for a smooth
ride, and calculate the force on a dam.
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2 A PREVIEW OF CALCULUS

The Area Problem
The origins of calculus go back at least 2500 years to the ancient Greeks, who found areas
using the “method of exhaustion.” They knew how to find the area of any polygon by
dividing it into triangles as in Figure 1 and adding the areas of these triangles.

It is a much more difficult problem to find the area of a curved figure. The Greek
method of exhaustion was to inscribe polygons in the figure and circumscribe polygons
about the figure and then let the number of sides of the polygons increase. Figure 2 illus-
trates this process for the special case of a circle with inscribed regular polygons.

Let be the area of the inscribed polygon with sides. As increases, it appears that
becomes closer and closer to the area of the circle. We say that the area of the circle is

the limit of the areas of the inscribed polygons, and we write

The Greeks themselves did not use limits explicitly. However, by indirect reasoning,
Eudoxus (fifth century BC) used exhaustion to prove the familiar formula for the area of a
circle: 

We will use a similar idea in Chapter 5 to find areas of regions of the type shown in Fig-
ure 3. We will approximate the desired area by areas of rectangles (as in Figure 4), let
the width of the rectangles decrease, and then calculate as the limit of these sums of
areas of rectangles.

The area problem is the central problem in the branch of calculus called integral cal-
culus. The techniques that we will develop in Chapter 5 for finding areas will also enable
us to compute the volume of a solid, the length of a curve, the force of water against a dam,
the mass and center of gravity of a rod, and the work done in pumping water out of a tank.

The Tangent Problem
Consider the problem of trying to find an equation of the tangent line to a curve with
equation at a given point . (We will give a precise definition of a tangent line in y ! f !x" P

t

FIGURE 3 
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In the Preview Visual, you can see how
areas of inscribed and circumscribed polygons 
approximate the area of a circle.

TEC
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A PREVIEW OF CALCULUS 3

Chapter 2. For now you can think of it as a line that touches the curve at as in Figure 5.)
Since we know that the point lies on the tangent line, we can find the equation of if we
know its slope . The problem is that we need two points to compute the slope and we
know only one point, , on . To get around the problem we first find an approximation to

by taking a nearby point on the curve and computing the slope of the secant line
. From Figure 6 we see that

Now imagine that moves along the curve toward as in Figure 7. You can see that
the secant line rotates and approaches the tangent line as its limiting position. This means
that the slope of the secant line becomes closer and closer to the slope of the tan-
gent line. We write

and we say that is the limit of as approaches along the curve. Since approaches
as approaches , we could also use Equation 1 to write

Specific examples of this procedure will be given in Chapter 2.
The tangent problem has given rise to the branch of calculus called differential calcu-

lus, which was not invented until more than 2000 years after integral calculus. The main
ideas behind differential calculus are due to the French mathematician Pierre Fermat
(1601–1665) and were developed by the English mathematicians John Wallis 
(1616–1703), Isaac Barrow (1630–1677), and Isaac Newton (1642–1727) and the German
mathematician Gottfried Leibniz (1646–1716).

The two branches of calculus and their chief problems, the area problem and the tan-
gent problem, appear to be very different, but it turns out that there is a very close con-
nection between them. The tangent problem and the area problem are inverse problems in
a sense that will be described in Chapter 5.

Velocity
When we look at the speedometer of a car and read that the car is traveling at 48 mi!h, what
does that information indicate to us? We know that if the velocity remains constant, then
after an hour we will have traveled 48 mi. But if the velocity of the car varies, what does it
mean to say that the velocity at a given instant is 48 mi!h?

In order to analyze this question, let’s examine the motion of a car that travels along a
straight road and assume that we can measure the distance traveled by the car (in feet) at 
l-second intervals as in the following chart:

2 m ! lim
x l a

f "x# ! f "a#
x ! a

Q P
m mPQ Q P x

a

m ! lim
Q lP

mPQ

mPQ m

Q P

1 mPQ !
f "x# ! f "a#

x ! a

PQ
Q mPQ

P t
m

m
P t

P

t ! Time elapsed (s) 0 1 2 3 4 5

d ! Distance (ft) 0 2 9 24 42 71

0

y

x

P

y=ƒ

t

P
Q

t

0 x

y

y

0 xa x

ƒ-f(a)P{a, f(a)}
x-a

t

Q{x, ƒ}

FIGURE 5 
The tangent line at P

FIGURE 6
The secant line PQ

FIGURE 7
Secant lines approaching the
tangent line
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4 A PREVIEW OF CALCULUS

As a first step toward finding the velocity after 2 seconds have elapsed, we find the aver-
age velocity during the time interval :

Similarly, the average velocity in the time interval is

We have the feeling that the velocity at the instant ! 2 can’t be much different from the
average velocity during a short time interval starting at . So let’s imagine that the dis-
tance traveled has been measured at 0.l-second time intervals as in the following chart:

Then we can compute, for instance, the average velocity over the time interval :

The results of such calculations are shown in the following chart:

The average velocities over successively smaller intervals appear to be getting closer to
a number near 10, and so we expect that the velocity at exactly is about 10 ft!s. In
Chapter 2 we will define the instantaneous velocity of a moving object as the limiting
value of the average velocities over smaller and smaller time intervals.

In Figure 8 we show a graphical representation of the motion of the car by plotting the
distance traveled as a function of time. If we write , then is the number of feet
traveled after seconds. The average velocity in the time interval is

which is the same as the slope of the secant line in Figure 8. The velocity when
is the limiting value of this average velocity as approaches 2; that is,

and we recognize from Equation 2 that this is the same as the slope of the tangent line to
the curve at .P

v ! lim
tl 2

f "t# ! f "2#
t ! 2

t
PQ v t ! 2

average velocity !
change in position

time elapsed
!

f"t# ! f"2#
t ! 2

t $2, t%
d ! f"t# f"t#

t ! 2

average velocity !
15.80 ! 9.00

2.5 ! 2
! 13.6 ft!s

$2, 2.5%

t ! 2
t

average velocity !
24 ! 9
3 ! 2

! 15 ft!s

2 " t " 3

! 16.5 ft!s

!
42 ! 9
4 ! 2

average velocity !
change in position

time elapsed

2 " t " 4

FIGURE 8 

t

d

0 1 2 3 4 5

10

20

P{2, f(2)}

Q{ t, f(t)}

t 2.0 2.1 2.2 2.3 2.4 2.5

d 9.00 10.02 11.16 12.45 13.96 15.80

Time interval

Average velocity (ft!s) 15.0 13.6 12.4 11.5 10.8 10.2

$2, 2.5% $2, 2.1%$2, 2.2%$2, 2.3%$2, 2.4%$2, 3%
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A PREVIEW OF CALCULUS 5

Thus, when we solve the tangent problem in differential calculus, we are also solving
problems concerning velocities. The same techniques also enable us to solve problems
involving rates of change in all of the natural and social sciences.

The Limit of a Sequence
In the fifth century BC the Greek philosopher Zeno of Elea posed four problems, now
known as Zeno’s paradoxes, that were intended to challenge some of the ideas concerning
space and time that were held in his day. Zeno’s second paradox concerns a race between
the Greek hero Achilles and a tortoise that has been given a head start. Zeno argued, as fol-
lows, that Achilles could never pass the tortoise: Suppose that Achil les starts at position 

and the tortoise starts at position . (See Figure 9.) When Achilles reaches the point
, the tortoise is farther ahead at position . When Achilles reaches , the tor-

toise is at . This process continues indefinitely and so it appears that the tortoise will
always be ahead! But this defies common sense.

One way of explaining this paradox is with the idea of a sequence. The successive posi-
tions of Achilles or the successive positions of the tortoise
form what is known as a sequence.

In general, a sequence is a set of numbers written in a definite order. For instance,
the sequence

can be described by giving the following formula for the th term:

We can visualize this sequence by plotting its terms on a number line as in Fig-
ure 10(a) or by drawing its graph as in Figure 10(b). Observe from either picture that the
terms of the sequence are becoming closer and closer to 0 as increases. In fact,
we can find terms as small as we please by making large enough. We say that the limit
of the sequence is 0, and we indicate this by writing

In general, the notation

is used if the terms approach the number as becomes large. This means that the num-
bers can be made as close as we like to the number by taking sufficiently large.an L n

an L n

lim
n l !

an ! L

lim
n l !

1
n

! 0

n
an ! 1!n n

an !
1
n

n

{1, 1
2 , 1

3 , 1
4 , 1

5 , . . .}

"an#

$a1, a2, a3, . . .% $t1, t2, t3, . . .%

FIGURE 9 
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FIGURE 10
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6 A PREVIEW OF CALCULUS

The concept of the limit of a sequence occurs whenever we use the decimal represen-
tation of a real number. For instance, if

then

The terms in this sequence are rational approximations to .
Let’s return to Zeno’s paradox. The successive positions of Achilles and the tortoise

form sequences and , where for all . It can be shown that both sequences
have the same limit:

It is precisely at this point that Achilles overtakes the tortoise.

The Sum of a Series
Another of Zeno’s paradoxes, as passed on to us by Aristotle, is the following: “A man
standing in a room cannot walk to the wall. In order to do so, he would first have to go half
the distance, then half the remaining distance, and then again half of what still remains.
This process can always be continued and can never be ended.” (See Figure 11.)

Of course, we know that the man can actually reach the wall, so this suggests that per-
haps the total distance can be expressed as the sum of infinitely many smaller distances as
follows:

3 1 !
1
2

!
1
4

!
1
8

!
1

16
! " " " !

1
2n ! " " "

FIGURE 11
1
2

1
4

1
8

1
16

p

lim
nl #

an ! p ! lim
nl #

tn

!an" !tn" an $ tn n

%

lim
nl #

an ! %

"
"
"

a7 ! 3.1415926

a6 ! 3.141592

a5 ! 3.14159

a4 ! 3.1415

a3 ! 3.141

a2 ! 3.14

a1 ! 3.1
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A PREVIEW OF CALCULUS 7

Zeno was arguing that it doesn’t make sense to add infinitely many numbers together. But
there are other situations in which we implicitly use infinite sums. For instance, in decimal
notation, the symbol means

and so, in some sense, it must be true that

More generally, if denotes the nth digit in the decimal representation of a number, then

Therefore some infinite sums, or infinite series as they are called, have a meaning. But we
must define carefully what the sum of an infinite series is.

Returning to the series in Equation 3, we denote by the sum of the first terms of the
series. Thus

Observe that as we add more and more terms, the partial sums become closer and closer
to 1. In fact, it can be shown that by taking large enough (that is, by adding sufficiently
many terms of the series), we can make the partial sum as close as we please to the num-
ber 1. It therefore seems reasonable to say that the sum of the infinite series is 1 and to
write

1
2

!
1
4

!
1
8

! " " " !
1
2n ! " " " ! 1

sn
n

s16 !
1
2

!
1
4

! " " " !
1

216 ! 0.99998474

"
"
"

s10 ! 1
2 ! 1

4 ! " " " ! 1
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"
"
"

s7 ! 1
2 ! 1

4 ! 1
8 ! 1

16 ! 1
32 ! 1

64 ! 1
128 ! 0.9921875

s6 ! 1
2 ! 1

4 ! 1
8 ! 1

16 ! 1
32 ! 1
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2 ! 1

4 ! 1
8 ! 1

16 ! 1
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s4 ! 1
2 ! 1

4 ! 1
8 ! 1
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s3 ! 1
2 ! 1

4 ! 1
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2 ! 1
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s1 ! 1
2 ! 0.5

sn n

0.d1d2d3d4 . . . !
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d2

102 !
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!
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! " " " !
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3
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!
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100
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3
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!
3
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! " " "

0.3 ! 0.3333 . . .
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8 A PREVIEW OF CALCULUS

In other words, the reason the sum of the series is 1 is that

In Chapter 11 we will discuss these ideas further. We will then use Newton’s idea of
combining infinite series with differential and integral calculus.

Summary
We have seen that the concept of a limit arises in trying to find the area of a region, the
slope of a tangent to a curve, the velocity of a car, or the sum of an infinite series. In each
case the common theme is the calculation of a quantity as the limit of other, easily calcu-
lated quantities. It is this basic idea of a limit that sets calculus apart from other areas of
mathematics. In fact, we could define calculus as the part of mathematics that deals with
limits.

After Sir Isaac Newton invented his version of calculus, he used it to explain the motion
of the planets around the sun. Today calculus is used in calculating the orbits of satellites
and spacecraft, in predicting population sizes, in estimating how fast oil prices rise or fall,
in forecasting weather, in measuring the cardiac output of the heart, in calculating life
insurance premiums, and in a great variety of other areas. We will explore some of these
uses of calculus in this book.

In order to convey a sense of the power of the subject, we end this preview with a list
of some of the questions that you will be able to answer using calculus:

1. How can we explain the fact, illustrated in Figure 12, that the angle of elevation
from an observer up to the highest point in a rainbow is 42°? (See page 282.)

2. How can we explain the shapes of cans on supermarket shelves? (See page 337.)
3. Where is the best place to sit in a movie theater? (See page 456.)
4. How can we design a roller coaster for a smooth ride? (See page 184.)
5. How far away from an airport should a pilot start descent? (See page 208.)
6. How can we fit curves together to design shapes to represent letters on a laser

printer? (See page 653.)
7. How can we estimate the number of workers that were needed to build the Great

Pyramid of Khufu in ancient Egypt? (See page 451.)
8. Where should an infielder position himself to catch a baseball thrown by an out-

fielder and relay it to home plate? (See page 456.)
9. Does a ball thrown upward take longer to reach its maximum height or to fall

back to its original height? (See page 604.)
10. How can we explain the fact that planets and satellites move in elliptical orbits?

(See page 868.)
11. How can we distribute water flow among turbines at a hydroelectric station so as

to maximize the total energy production? (See page 966.)
12. If a marble, a squash ball, a steel bar, and a lead pipe roll down a slope, which of

them reaches the bottom first? (See page 1039.)

lim
nl !

sn ! 1

rays from sun

observer

rays from sun

42°

FIGURE 12

138°
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Functions and Models1

The fundamental objects that we deal with in calculus are functions. This chapter prepares the way for
calculus by discussing the basic ideas concerning functions, their graphs, and ways of transforming and
combining them. We stress that a function can be represented in different ways: by an equation, in a table,
by a graph, or in words. We look at the main types of functions that occur in calculus and describe the
process of using these functions as mathematical models of real-world phenomena. We also discuss the
use of graphing calculators and graphing software for computers.

9
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Often a graph is the best way to repre-
sent a function because it conveys so
much information at a glance. Shown is a
graph of the ground acceleration created
by the 2008 earthquake in Sichuan
province in China. The hardest hit town
was Beichuan, as pictured.
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10 CHAPTER 1 FUNCTIONS AND MODELS

Functions arise whenever one quantity depends on another. Consider the following four
situations.
A. The area of a circle depends on the radius of the circle. The rule that connects

and is given by the equation . With each positive number there is associ-
ated one value of , and we say that is a function of .

B. The human population of the world depends on the time . The table gives estimates
of the world population at time for certain years. For instance,

But for each value of the time there is a corresponding value of and we say that
is a function of .

C. The cost of mailing an envelope depends on its weight . Although there is no
simple formula that connects and , the post office has a rule for determining
when is known.

D. The vertical acceleration of the ground as measured by a seismograph during an
earthquake is a function of the elapsed time Figure 1 shows a graph generated by
seismic activity during the Northridge earthquake that shook Los Angeles in 1994.
For a given value of the graph provides a corresponding value of .

Each of these examples describes a rule whereby, given a number ( , , , or ), another
number ( , , , or ) is assigned. In each case we say that the second number is a func-
tion of the first number.

A function is a rule that assigns to each element in a set exactly one ele-
ment,   called , in a set .

We usually consider functions for which the sets and are sets of real numbers. The
set is called the domain of the function. The number is the value of at and is
read “ of .” The range of is the set of all possible values of as varies through-
out the domain. A symbol that represents an arbitrary number in the domain of a function

is called an independent variable. A symbol that represents a number in the range of
is called a dependent variable. In Example A, for instance, r is the independent variable
and A is the dependent variable.
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FIGURE 1
Vertical ground acceleration during

the Northridge earthquake
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1.1 Four Ways to Represent a Function

Population
Year (millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080
2010 6870
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SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION 11

It’s helpful to think of a function as a machine (see Figure 2). If is in the domain of
the function then when enters the machine, it’s accepted as an input and the machine
produces an output according to the rule of the function. Thus we can think of the
domain as the set of all possible inputs and the range as the set of all possible outputs.

The preprogrammed functions in a calculator are good examples of a function as a
machine. For example, the square root key on your calculator computes such a function.
You press the key labeled (or ) and enter the input . If , then is not in the
domain of this function; that is, is not an acceptable input, and the calculator will indi-
cate an error. If , then an approximation to will appear in the display. Thus the

key on your calculator is not quite the same as the exact mathematical function
defined by .

Another way to picture a function is by an arrow diagram as in Figure 3. Each arrow
connects an element of to an element of . The arrow indicates that is associated
with is associated with , and so on.

The most common method for visualizing a function is its graph. If is a function with
domain , then its graph is the set of ordered pairs

(Notice that these are input-output pairs.) In other words, the graph of consists of all
points in the coordinate plane such that and is in the domain of .

The graph of a function gives us a useful picture of the behavior or “life history” of
a function. Since the -coordinate of any point on the graph is , we can read
the value of from the graph as being the height of the graph above the point (see
Figure 4). The graph of also allows us to picture the domain of on the -axis and its
range on the -axis as in Figure 5.

The graph of a function is shown in Figure 6.
(a) Find the values of and .
(b) What are the domain and range of ?

SOLUTION
(a) We see from Figure 6 that the point lies on the graph of , so the value of
at 1 is . (In other words, the point on the graph that lies above is 3 units
above the -axis.)

When , the graph lies about 0.7 unit below the x-axis, so we estimate that
.

(b) We see that is defined when , so the domain of is the closed inter-
val . Notice that takes on all values from to 4, so the range of is
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FIGURE 2
Machine diagram for a function ƒ
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FIGURE 3 
Arrow diagram for ƒ

The notation for intervals is given in 
Appendix A.
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12 CHAPTER 1 FUNCTIONS AND MODELS

Sketch the graph and find the domain and range of each function.
(a) (b) 

SOLUTION
(a) The equation of the graph is , and we recognize this as being the equa-
tion of a line with slope 2 and -intercept . (Recall the slope-intercept form of the
equation of a line: . See Appendix B.) This enables us to sketch a portion of
the graph of in Figure 7. The expression is defined for all real numbers, so the
domain of is the set of all real numbers, which we denote by . The graph shows that
the range is also .
(b) Since and , we could plot the points and

, together with a few other points on the graph, and join them to produce the
graph (Figure 8). The equation of the graph is , which represents a parabola (see
Appendix C). The domain of is . The range of consists of all values of , that is,
all numbers of the form . But for all numbers and any positive number is a
square. So the range of is . This can also be seen from Figure 8.

If and , evaluate .

SOLUTION We first evaluate by replacing by in the expression for :

Then we substitute into the given expression and simplify:

Representations of Functions
There are four possible ways to represent a function:

■ verbally (by a description in words)
■ numerically (by a table of values)
■ visually (by a graph)
■ algebraically (by an explicit formula)

If a single function can be represented in all four ways, it’s often useful to go from one
representation to another to gain additional insight into the function. (In Example 2, for
instance, we started with algebraic formulas and then obtained the graphs.) But certain
functions are described more naturally by one method than by another. With this in mind,
let’s reexamine the four situations that we considered at the beginning of this section.

!
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The expression

in Example 3 is called a difference quotient
and occurs frequently in calculus. As we will 
see in Chapter 2, it represents the average 
rate of change of between and

.

f !a ! h" " f !a"
h

x ! a ! h
x ! af !x"
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SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION 13

A. The most useful representation of the area of a circle as a function of its radius is
probably the algebraic formula , though it is possible to compile a table of
values or to sketch a graph (half a parabola). Because a circle has to have a positive
radius, the domain is , and the range is also .

B. We are given a description of the function in words: is the human population of
the world at time t. Let’s measure so that corresponds to the year 1900. The
table of values of world population provides a convenient representation of this func-
tion. If we plot these values, we get the graph (called a scatter plot) in Figure 9. It too
is a useful representation; the graph allows us to absorb all the data at once. What
about a formula? Of course, it’s impossible to devise an explicit formula that gives
the exact human population at any time t. But it is possible to find an expression
for a function that approximates . In fact, using methods explained in Section 1.2,
we obtain the approximation

Figure 10 shows that it is a reasonably good “fit.” The function is called a mathe-
matical model for population growth. In other words, it is a function with an explicit
formula that approximates the behavior of our given function. We will see, however,
that the ideas of calculus can be applied to a table of values; an explicit formula is not
necessary. 

The function is typical of the functions that arise whenever we attempt to apply
calculus to the real world. We start with a verbal description of a function. Then we
may be able to construct a table of values of the function, perhaps from instrument
readings in a scientific experiment. Even though we don’t have complete knowledge
of the values of the function, we will see throughout the book that it is still possible to
perform the operations of calculus on such a function.

C. Again the function is described in words: Let be the cost of mailing a large enve-
lope with weight . The rule that the US Postal Service used as of 2010 is as follows:
The cost is 88 cents for up to 1 oz, plus 17 cents for each additional ounce (or less)
up to 13 oz. The table of values shown in the margin is the most convenient represen-
tation for this function, though it is possible to sketch a graph (see Example 10).

D. The graph shown in Figure 1 is the most natural representation of the vertical acceler-
ation function . It’s true that a table of values could be compiled, and it is even 
possible to devise an approximate formula. But everything a geologist needs to
know—amplitudes and patterns—can be seen easily from the graph. (The same is 
true for the patterns seen in electrocardiograms of heart patients and polygraphs for
lie-detection.)
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A function defined by a table of values is called a
tabular function.
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14 CHAPTER 1 FUNCTIONS AND MODELS

In the next example we sketch the graph of a function that is defined verbally.

When you turn on a hot-water faucet, the temperature of the water 
depends on how long the water has been running. Draw a rough graph of as a function
of the time that has elapsed since the faucet was turned on.

SOLUTION The initial temperature of the running water is close to room temperature
because the water has been sitting in the pipes. When the water from the hot-water tank
starts flowing from the faucet, increases quickly. In the next phase, is constant at
the tempera ture of the heated water in the tank. When the tank is drained, decreases 
to the temperature of the water supply. This enables us to make the rough sketch of as
a function of in Figure 11.

In the following example we start with a verbal description of a function in a physical
situation and obtain an explicit algebraic formula. The ability to do this is a useful skill in
solving calculus problems that ask for the maximum or minimum values of quantities.

A rectangular storage container with an open top has a volume of 10 m .
The length of its base is twice its width. Material for the base costs $10 per square meter;
material for the sides costs $6 per square meter. Express the cost of materials as a func-
tion of the width of the base.

SOLUTION We draw a diagram as in Figure 12 and introduce notation by letting and
be the width and length of the base, respectively, and be the height.

The area of the base is , so the cost, in dollars, of the material for the
base is . Two of the sides have area and the other two have area , so the
cost of the material for the sides is . The total cost is therefore

To express as a function of alone, we need to eliminate and we do so by using the
fact that the volume is 10 m . Thus

which gives

Substituting this into the expression for , we have

Therefore the equation

expresses as a function of .

Find the domain of each function.

(a) (b) 

SOLUTION
(a) Because the square root of a negative number is not defined (as a real number), 
the domain of consists of all values of such that . This is equivalent to

, so the domain is the interval .

EXAMPLE 6

v EXAMPLE 5

EXAMPLE 4

!!2, ""x # !2
x $ 2 # 0xf

t#x" !
1

x 2 ! x
f #x" ! sx $ 2

wC

w % 0C#w" ! 20w2 $
180
w

C ! 20w2 $ 36w$ 5
w2% ! 20w2 $

180
w

C

h !
10
2w2 !

5
w2

w#2w"h ! 10

3
hwC

C ! 10#2w2 " $ 6!2#wh" $ 2#2wh"& ! 20w2 $ 36wh

6!2#wh" $ 2#2wh"&
2whwh10#2w2 "

#2w"w ! 2w2
h

2ww

3

t
T

T
TT

t
T

T

t

T

0

FIGURE 11

w
2w

h

FIGURE 12

In setting up applied functions as in 
Example 5, it may be useful to review the 
principles of problem solving as discussed on
page 75, particularly Step 1: Understand the
Problem.

PS

Domain Convention
If a function is given by a formula and the
domain is not stated explicitly, the convention is
that the domain is the set of all numbers for
which the formula makes sense and defines a
real number.
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SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION 15

(b) Since

and division by is not allowed, we see that is not defined when or .
Thus the domain of is

which could also be written in interval notation as

The graph of a function is a curve in the -plane. But the question arises: Which curves
in the -plane are graphs of functions? This is answered by the following test.

The Vertical Line Test A curve in the -plane is the graph of a function of if and
only if no vertical line intersects the curve more than once.

The reason for the truth of the Vertical Line Test can be seen in Figure 13. If each ver-
tical line intersects a curve only once, at , then exactly one functional value 
is defined by . But if a line intersects the curve twice, at and ,
then the curve can’t represent a function because a function can’t assign two different val-
ues to .

For example, the parabola shown in Figure 14(a) is not the graph of a func-
tion of because, as you can see, there are vertical lines that intersect the parabola twice.
The parabola, however, does contain the graphs of two functions of . Notice that the equa-
tion implies , so Thus the upper and lower halves
of the parabola are the graphs of the functions [from Example 6(a)] and

. [See Figures 14(b) and (c).] We observe that if we reverse the roles of
and , then the equation does define as a function of (with as

the independent variable and as the dependent variable) and the parabola now appears as
the graph of the function .
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16 CHAPTER 1 FUNCTIONS AND MODELS

Piecewise Defined Functions
The functions in the following four examples are defined by different formulas in dif ferent
parts of their domains. Such functions are called piecewise defined functions.

A function is defined by

Evaluate , , and and sketch the graph.

SOLUTION Remember that a function is a rule. For this particular function the rule is the
following: First look at the value of the input . If it happens that , then the value
of is . On the other hand, if , then the value of is .

How do we draw the graph of ? We observe that if , then , so 
the part of the graph of that lies to the left of the vertical line must coincide
with the line , which has slope and -intercept 1. If , then

, so the part of the graph of that lies to the right of the line must
coincide with the graph of , which is a parabola. This enables us to sketch the
graph in Figure 15. The solid dot indicates that the point is included on the
graph; the open dot indicates that the point is excluded from the graph.

The next example of a piecewise defined function is the absolute value function. Recall
that the absolute value of a number , denoted by , is the distance from to on the
real number line. Distances are always positive or , so we have

for every number 
For example,

In general, we have

(Remember that if is negative, then is positive.)

Sketch the graph of the absolute value function .

SOLUTION From the preceding discussion we know that

Using the same method as in Example 7, we see that the graph of coincides with the
line to the right of the -axis and coincides with the line to the left of the
-axis (see Figure 16).y
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For a more extensive review of absolute values,
see Appendix A.
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SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION 17

Find a formula for the function graphed in Figure 17.

SOLUTION The line through and has slope and -intercept , so
its equation is . Thus, for the part of the graph of that joins to , we
have

The line through and has slope , so its point-slope form is

So we have

We also see that the graph of coincides with the -axis for . Putting this infor-
mation together, we have the following three-piece formula for :

In Example C at the beginning of this section we considered the cost
of mailing a large envelope with weight . In effect, this is a piecewise defined function
because, from the table of values on page 13, we have

The graph is shown in Figure 18. You can see why functions similar to this one are
called step functions—they jump from one value to the next. Such functions will be
studied in Chapter 2.

Symmetry
If a function satisfies for every number in its domain, then is called an
even function. For instance, the function is even because

The geometric significance of an even function is that its graph is symmetric with respect 
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Point-slope form of the equation of a line:

See Appendix B.

y ! y1 ! m!x ! x1 "
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18 CHAPTER 1 FUNCTIONS AND MODELS

to the -axis (see Figure 19). This means that if we have plotted the graph of for ,
we obtain the entire graph simply by reflecting this portion about the -axis.

If satisfies for every number in its domain, then is called an odd
function. For example, the function is odd because

The graph of an odd function is symmetric about the origin (see Figure 20). If we already
have the graph of for , we can obtain the entire graph by rotating this portion
through about the origin.

Determine whether each of the following functions is even, odd, or 
neither even nor odd.
(a) (b) (c) 

SOLUTION

(a)

Therefore is an odd function.

(b)

So is even.

(c)

Since and , we conclude that is neither even nor odd.

The graphs of the functions in Example 11 are shown in Figure 21. Notice that the
graph of h is symmetric neither about the y-axis nor about the origin.

FIGURE 21
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v EXAMPLE 11

hh!!x" ! !h!x"h!!x" ! h!x"
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t
t!!x" " 1 ! !!x"4 " 1 ! x 4 " t!x"

f

" !f !x"

" !x 5 ! x " !!x 5 " x"

f !!x" " !!x"5 " !!x" " !!1"5x 5 " !!x"

h!x" " 2x ! x 2t!x" " 1 ! x 4f !x" " x 5 " x
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x $ 0f

f !!x" " !!x"3 " !x 3 " !f !x"

f !x" " x 3
fxf !!x" " !f !x"f

0
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FIGURE 20 An odd function
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SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION 19

1. If and , is it true 
that ?

2. If

and    

is it true that ?

3. The graph of a function is given.
(a) State the value of .
(b) Estimate the value of .
(c) For what values of is ?
(d) Estimate the value of such that .
(e) State the domain and range of .
(f) On what interval is increasing?

4. The graphs of and t are given.
(a) State the values of and .
(b) For what values of is ?x f !x" ! t!x"

f !!4" t!3"
f

f ! t

t!x" ! xf !x" !
x 2 ! x
x ! 1

f ! t
t!u" ! u " s2 ! uf !x" ! x " s2 ! x

y

0 x1

1

f
f
f !x" ! 0x

f !x" ! 1x
f !!1"

f !1"
f

(c) Estimate the solution of the equation .
(d) On what interval is decreasing?
(e) State the domain and range of 
(f) State the domain and range of .

5. Figure 1 was recorded by an instrument operated by the Cali-
fornia Department of Mines and Geology at the University
Hospital of the University of Southern California in Los Ange-
les. Use it to estimate the range of the vertical ground accelera-
tion function at USC during the Northridge earthquake.

6. In this section we discussed examples of ordinary, everyday
functions: Population is a function of time, postage cost is a
function of weight, water temperature is a function of time.
Give three other examples of functions from everyday life that
are described verbally. What can you say about the domain and
range of each of your functions? If possible, sketch a rough
graph of each function.

g

x

y

0

f
2

2

t
f.

f
f !x" ! !1

1.1 Exercises

1. Homework Hints available at stewartcalculus.com

Increasing and Decreasing Functions
The graph shown in Figure 22 rises from to , falls from to , and rises again from 
to . The function is said to be increasing on the interval , decreasing on , and
increasing again on . Notice that if and are any two numbers between and 
with , then . We use this as the defining property of an increasing 
function.

A function is called increasing on an interval if

It is called decreasing on if

In the definition of an increasing function it is important to realize that the inequality
must be satisfied for every pair of numbers and in with .

You can see from Figure 23 that the function is decreasing on the interval
and increasing on the interval .#0, #"!!#, 0$

f !x" ! x 2
x1 $ x2Ix2x1f !x1 " $ f !x2 "

whenever x1 $ x2 in If !x1 " % f !x2 "

I

whenever x1 $ x2 in If !x1 " $ f !x2 "

If

f !x1 " $ f !x2 "x1 $ x2

bax2x1#c, d $
#b, c$#a, b$fD

CCBBA

A

B

C

D
y=ƒ

f(x¡)

a

y

0 xx¡ x™ b c d

FIGURE 22

f(x™)

FIGURE 23

0

y

x

y=≈
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20 CHAPTER 1 FUNCTIONS AND MODELS

7–10 Determine whether the curve is the graph of a function of . 
If it is, state the domain and range of the function.

7. 8.

9. 10.

11. The graph shown gives the weight of a certain person as a
function of age. Describe in words how this person’s weight
varies over time. What do you think happened when this
person was 30 years old?

12. The graph shows the height of the water in a bathtub as a 
function of time. Give a verbal description of what you think
happened.

13. You put some ice cubes in a glass, fill the glass with cold
water, and then let the glass sit on a table. Describe how the
temperature of the water changes as time passes. Then sketch a
rough graph of the temperature of the water as a function of the
elapsed time.

14. Three runners compete in a 100-meter race. The graph depicts
the distance run as a function of time for each runner. Describe 

0

height
(inches)

15
10
5

time
(min)

5 10 15

age
(years)

weight
(pounds)

0

150
100
50

10

200

20 30 40 50 60 70

y

x0 1

1

y

x0

1

1

y

x0 1

1

y

x0 1

1

x in words what the graph tells you about this race. Who won the
race? Did each runner finish the race?

15. The graph shows the power consumption for a day in Septem-
ber in San Francisco. ( is measured in megawatts; is mea -
sured in hours starting at midnight.)
(a) What was the power consumption at 6 AM? At 6 PM?
(b) When was the power consumption the lowest? When was it

the highest? Do these times seem reasonable?

16. Sketch a rough graph of the number of hours of daylight as a
function of the time of year.

17. Sketch a rough graph of the outdoor temperature as a function
of time during a typical spring day.

18. Sketch a rough graph of the market value of a new car as a
function of time for a period of 20 years. Assume the car is
well maintained.

19. Sketch the graph of the amount of a particular brand of coffee
sold by a store as a function of the price of the coffee.

20. You place a frozen pie in an oven and bake it for an hour. Then
you take it out and let it cool before eating it. Describe how the
temperature of the pie changes as time passes. Then sketch a
rough graph of the temperature of the pie as a function of time.

21. A homeowner mows the lawn every Wednesday afternoon.
Sketch a rough graph of the height of the grass as a function of
time over the course of a four-week period.

22. An airplane takes off from an airport and lands an hour later at
another airport, 400 miles away. If t represents the time in min-
utes since the plane has left the terminal building, let be x!t"

P

0 181512963 t21

400

600

800

200

Pacific Gas & Electric

tP

0

y (m)

100

t (s)20

A B C
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SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION    21

the horizontal distance traveled and be the altitude of the
plane.
(a) Sketch a possible graph of .
(b) Sketch a possible graph of .
(c) Sketch a possible graph of the ground speed.
(d) Sketch a possible graph of the vertical velocity.

23. The number N (in millions) of US cellular phone subscribers is
shown in the table. (Midyear estimates are given.)

(a) Use the data to sketch a rough graph of N as a function of 
(b) Use your graph to estimate the number of cell-phone sub-

scribers at midyear in 2001 and 2005.

24. Temperature readings (in °F) were recorded every two hours
from midnight to 2:00 PM in Phoenix on September 10, 2008.
The time was measured in hours from midnight.

(a) Use the readings to sketch a rough graph of as a function
of 

(b) Use your graph to estimate the temperature at 9:00 AM.

25. If , find , , , ,
, , , , and .

26. A spherical balloon with radius r inches has volume
. Find a function that represents the amount of air

required to inflate the balloon from a radius of r inches to a
radius of r ! 1 inches.

27–30 Evaluate the difference quotient for the given function. 
Simplify your answer.

27. ,    

28. ,    

29. ,    

30. ,    

31–37 Find the domain of the function.

31. 32.

33. 34. t!t" ! s3 " t " s2 ! tf !t" ! s3 2t " 1

f !x" !
2x 3 " 5

x 2 ! x " 6
f !x" !

x ! 4
x 2 " 9

f !x" " f !1"
x " 1

f !x" !
x ! 3
x ! 1

f !x" " f !a"
x " a

f !x" !
1
x

f !a ! h" " f !a"
h

f !x" ! x 3

f !3 ! h" " f !3"
h

f !x" ! 4 ! 3x " x 2

V!r" ! 4
3 #r 3

f !a ! h"[ f !a"]2,f !a2"f !2a"2 f !a"f !a ! 1"
f !"a"f !a"f !"2"f !2"f !x" ! 3x 2 " x ! 2

t.
T

t

T

t.

y!t"
x!t"

y!t" 35. 36.

37.

38. Find the domain and range and sketch the graph of the 
function .

39–50 Find the domain and sketch the graph of the function.

39. 40.

41. 42.

43. 44.

45. 46.

47.

48.

49.

50.

51–56 Find an expression for the function whose graph is the 
given curve.

51. The line segment joining the points and 

52. The line segment joining the points and 

53. The bottom half of the parabola 

54. The top half of the circle 

55. 56.

57–61 Find a formula for the described function and state its
domain.

57. A rectangle has perimeter 20 m. Express the area of the rect -
angle as a function of the length of one of its sides.

F!p" ! s2 " sp

f !u" !
u ! 1

1 !
1

u ! 1

y

0 x

1

1

y

0 x

1

1

x 2 ! !y " 2"2 ! 4

x ! !y " 1"2 ! 0

!7, "10"!"5, 10"

!5, 7"!1, "3"

f !x" ! #x ! 9
"2x
"6

if x $ "3
if $ x $ % 3
if x & 3

f !x" ! #x ! 2
x 2

if x % "1
if x & "1

f !x" ! #3 " 1
2 x

2x " 5
if x % 2
if x & 2

f !x" ! #x ! 2
1 " x

if x $ 0
if x ' 0

t!x" ! $ x $ " xG!x" !
3x ! $ x $

x

F!x" ! $ 2x ! 1 $t!x" ! sx " 5

H!t" !
4 " t 2

2 " t
f !t" ! 2t ! t 2

F !x" ! x 2 " 2x ! 1f !x" ! 2 " 0.4x

h!x" ! s4 " x 2

h!x" !
1

s4 x 2 " 5x

t 1996 1998 2000 2002 2004 2006

N 44 69 109 141 182 233

t 0 2 4 6 8 10 12 14

T 82 75 74 75 84 90 93 94
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22 CHAPTER 1 FUNCTIONS AND MODELS

58. A rectangle has area 16 m . Express the perimeter of the rect-
 angle as a function of the length of one of its sides.

59. Express the area of an equilateral triangle as a function of the
length of a side.

60. Express the surface area of a cube as a function of its volume.

61. An open rectangular box with volume 2 m has a square base.
Express the surface area of the box as a function of the length
of a side of the base.

62. A Norman window has the shape of a rectangle surmounted by
a semicircle. If the perimeter of the window is 30 ft, express
the area of the window as a function of the width of the
window.

63. A box with an open top is to be constructed from a rectangular
piece of cardboard with dimensions 12 in. by 20 in. by cutting
out equal squares of side at each corner and then folding up
the sides as in the figure. Express the vol ume of the box as a
function of .

64. A cell phone plan has a basic charge of $35 a month. The plan
includes 400 free minutes and charges 10 cents for each addi-
tional minute of usage. Write the monthly cost as a function
of the number of minutes used and graph as a function of
for .

65. In a certain state the maximum speed permitted on freeways is
and the minimum speed is . The fine for vio-

lating these limits is $15 for every mile per hour above the
maximum speed or below the minimum speed. Express the
amount of the fine as a function of the driving speed and
graph for .

66. An electricity company charges its customers a base rate of 
$10 a month, plus 6 cents per kilowatt-hour (kWh) for the first
1200 kWh and 7 cents per kWh for all usage over 1200 kWh.
Express the monthly cost as a function of the amount of
electricity used. Then graph the function for .E 0 ! x ! 2000

E x

2

F!x" 0 ! x ! 100
F x

40 mi#h65 mi#h

0 ! x ! 600
x C x

C

20

12
x

x

x

x
x x

x x

x

x
V

x

xA

3

67. In a certain country, income tax is assessed as follows. There is
no tax on income up to $10,000. Any income over $10,000 is
taxed at a rate of 10%, up to an income of $20,000. Any income
over $20,000 is taxed at 15%.
(a) Sketch the graph of the tax rate R as a function of the

income I.
(b) How much tax is assessed on an income of $14,000? 

On $26,000?
(c) Sketch the graph of the total assessed tax T as a function of

the income I.

68. The functions in Example 10 and Exercise 67 are called step
functions because their graphs look like stairs. Give two other
examples of step functions that arise in everyday life.

69–70 Graphs of and are shown. Decide whether each function
is even, odd, or neither. Explain your reasoning.

69. 70.

71. (a) If the point is on the graph of an even function, what
other point must also be on the graph?

(b) If the point is on the graph of an odd function, what
other point must also be on the graph?

72. A function has domain and a portion of its graph is
shown.
(a) Complete the graph of if it is known that is even.
(b) Complete the graph of if it is known that is odd.

73–78 Determine whether is even, odd, or neither. If you have a
graphing calculator, use it to check your answer visually.

73. 74.

75. 76.

77. 78. f !x" ! 1 " 3x 3 # x 5f !x" ! 1 " 3x 2 # x 4

f !x" !
x

x " 1
f !x" ! x $ x $

f !x" !
x

x 2 " 1
f !x" !

x 2

x 4 " 1

f

x0

y

5_5

f f
f f

f %#5, 5&

!5, 3"

!5, 3"

y

x

f

g

y

x

f
g

tf
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SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS    23

79. If and are both even functions, is even? If  and are
both odd functions, is odd? What if is even and is
odd? Justify your answers.

f t f ! t f t
f ! t f t

80. If and are both even functions, is the product even? If
and are both odd functions, is odd? What if is even and 

is odd? Justify your answers.
t ft f

t

f t ft f

A mathematical model is a mathematical description (often by means of a function or an
equation) of a real-world phenomenon such as the size of a population, the demand for a
product, the speed of a falling object, the concentration of a product in a chemical reaction,
the life expectancy of a person at birth, or the cost of emission reductions. The purpose of
the model is to understand the phenomenon and perhaps to make predictions about future
behavior.

Figure 1 illustrates the process of mathematical modeling. Given a real-world problem,
our first task is to formulate a mathematical model by identifying and naming the inde-
pendent and dependent variables and making assumptions that simplify the phenomenon
enough to make it mathematically tractable. We use our knowledge of the physical situation
and our mathematical skills to obtain equations that relate the variables. In situations where
there is no physical law to guide us, we may need to collect data (either from a library or
the Internet or by conducting our own experiments) and examine the data in the form of a
table in order to discern patterns. From this numeri cal representation of a function we may
wish to obtain a graphical representation by plotting the data. The graph might even sug-
gest a suitable algebraic formula in some cases.

The second stage is to apply the mathematics that we know (such as the calculus that will
be developed throughout this book) to the mathematical model that we have formulated in
order to derive mathematical conclusions. Then, in the third stage, we take those mathe-
matical conclusions and interpret them as information about the original real-world phe-
nomenon by way of offering explanations or making predictions. The final step is to test our
predictions by checking against new real data. If the predictions don’t compare well with
reality, we need to refine our model or to formulate a new model and start the cycle again.

A mathematical model is never a completely accurate representation of a physical situ-
ation—it is an idealization.A good model simplifies reality enough to permit mathematical
calculations but is accurate enough to provide valuable conclusions. It is important to real-
ize the limitations of the model. In the end, Mother Nature has the final say.

There are many different types of functions that can be used to model relationships 
observed in the real world. In what follows, we discuss the behavior and graphs of these 
functions and give examples of situations appropriately modeled by such functions.

Linear Models
When we say that y is a linear function of x, we mean that the graph of the function is a
line, so we can use the slope-intercept form of the equation of a line to write a formula for 

FIGURE 1 The modeling process

Real-world
problem

Mathematical
model

Real-world
predictions

Mathematical
conclusions

Test

Formulate Solve Interpret

1.2 Mathematical Models: A Catalog of Essential Functions

The coordinate geometry of lines is reviewed 
in Appendix B.
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24 CHAPTER 1 FUNCTIONS AND MODELS

the function as

where m is the slope of the line and b is the y-intercept.
A characteristic feature of linear functions is that they grow at a constant rate. For in-

stance, Figure 2 shows a graph of the linear function and a table of sample
values. Notice that whenever x increases by 0.1, the value of increases by 0.3. So
increases three times as fast as x. Thus the slope of the graph , namely 3, can be
interpreted as the rate of change of y with respect to x.

(a) As dry air moves upward, it expands and cools. If the ground temperature is
and the temperature at a height of 1 km is , express the temperature T (in °C) as a
function of the height h (in kilometers), assuming that a linear model is appropriate.
(b) Draw the graph of the function in part (a). What does the slope represent?
(c) What is the temperature at a height of 2.5 km?

SOLUTION
(a) Because we are assuming that T is a linear function of h, we can write

We are given that when , so

In other words, the y-intercept is .
We are also given that when , so

The slope of the line is therefore and the required linear function is

(b) The graph is sketched in Figure 3. The slope is , and this represents
the rate of change of temperature with respect to height.
(c) At a height of , the temperature is

EXAMPLE 1v

T ! !10!2.5" " 20 ! !5#C

h ! 2.5 km

m ! !10#C#km

T ! !10h " 20

m ! 10 ! 20 ! !10

10 ! m ! 1 " 20

h ! 1T ! 10
b ! 20

20 ! m ! 0 " b ! b

h ! 0T ! 20

T ! mh " b

10#C
20#C

x

y

0

y=3x-2

_2

FIGURE 2 

y ! 3x ! 2
f !x"f !x"

f !x" ! 3x ! 2

y ! f !x" ! mx " b

x

1.0 1.0
1.1 1.3
1.2 1.6
1.3 1.9
1.4 2.2
1.5 2.5

f !x" ! 3x ! 2

FIGURE 3 
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SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS    25

If there is no physical law or principle to help us formulate a model, we construct an
empirical model, which is based entirely on collected data. We seek a curve that “fits” the
data in the sense that it captures the basic trend of the data points.

Table 1 lists the average carbon dioxide level in the atmosphere, measured
in parts per million at Mauna Loa Observatory from 1980 to 2008. Use the data in Table 1
to find a model for the carbon dioxide level.

SOLUTION We use the data in Table 1 to make the scatter plot in Figure 4, where repre-
sents time (in years) and represents the level (in parts per million, ppm).

Notice that the data points appear to lie close to a straight line, so it’s natural to
choose a linear model in this case. But there are many possible lines that approximate
these data points, so which one should we use? One possibility is the line that passes
through the first and last data points. The slope of this line is

and its equation is

or

Equation 1 gives one possible linear model for the carbon dioxide level; it is graphed
in Figure 5.

FIGURE 5 
Linear model through 

first and last data points
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FIGURE 4   Scatter plot for the average CO™ level
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TABLE 1

level level
Year (in ppm) Year (in ppm)

1980 338.7 1996 362.4
1982 341.2 1998 366.5
1984 344.4 2000 369.4
1986 347.2 2002 373.2
1988 351.5 2004 377.5
1990 354.2 2006 381.9
1992 356.3 2008 385.6
1994 358.6

CO2CO2
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26 CHAPTER 1 FUNCTIONS AND MODELS

Notice that our model gives values higher than most of the actual levels. A better
linear model is obtained by a procedure from statistics called linear regression. If we use
a graphing calculator, we enter the data from Table 1 into the data editor and choose the
linear regression command. (With Maple we use the fit[leastsquare] command in the
stats package; with Mathematica we use the Fit command.) The machine gives the slope
and y-intercept of the regression line as

So our least squares model for the level is

In Figure 6 we graph the regression line as well as the data points. Comparing with
Figure 5, we see that it gives a better fit than our previous linear model.

Use the linear model given by Equa tion 2 to estimate the average
level for 1987 and to predict the level for the year 2015. According to this model, when
will the level exceed 420 parts per million?
SOLUTION Using Equation 2 with , we estimate that the average level in
1987 was

This is an example of interpolation because we have estimated a value between observed
values. (In fact, the Mauna Loa Observatory reported that the average level in 1987
was 348.93 ppm, so our estimate is quite accurate.)

With , we get

So we predict that the average level in the year 2015 will be 395.3 ppm. This is 
an example of extrapolation because we have predicted a value outside the region of
observations. Consequently, we are far less certain about the accuracy of our prediction.

Using Equation 2, we see that the level exceeds 420 ppm when

Solving this inequality, we get

CO2

t !
3358.07
1.65429

! 2029.92

1.65429t " 2938.07 ! 420

CO2

CO2

C"2015# ! "1.65429#"2015# " 2938.07 ! 395.32

t ! 2015

CO2

C"1987# ! "1.65429#"1987# " 2938.07 ! 349.00

t ! 1987 CO2

CO2

v EXAMPLE 3 CO2

FIGURE 6
The regression line
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2 C ! 1.65429t " 2938.07

CO2

m ! 1.65429 b ! "2938.07

A computer or graphing calculator finds the
regression line by the method of least squares,
which is to minimize the sum of the squares of
the vertical distances between the data points
and the line. The details are explained in 
Section 14.7.
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SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS    27

We therefore predict that the level will exceed 420 ppm by the year 2030. This 
pre diction is risky because it involves a time quite remote from our observations. In fact,
we see from Figure 6 that the trend has been for levels to increase rather more rap-
idly in recent years, so the level might exceed 420 ppm well before 2030.

Polynomials
A function is called a polynomial if

where is a nonnegative integer and the numbers are constants called the
coefficients of the polynomial. The domain of any polynomial is If the 
leading coefficient , then the degree of the polynomial is . For example, the 
function

is a polynomial of degree 6.
A polynomial of degree 1 is of the form and so it is a linear function. 

A polynomial of degree 2 is of the form and is called a quadratic
function. Its graph is always a parabola obtained by shifting the parabola , as we
will see in the next section. The parabola opens upward if and downward if .
(See Figure 7.)

A polynomial of degree 3 is of the form

and is called a cubic function. Figure 8 shows the graph of a cubic function in part (a) and
graphs of polynomials of degrees 4 and 5 in parts (b) and (c). We will see later why the
graphs have these shapes.

FIGURE 8 (a) y=˛-x+1

x

1

y

10

(b) y=x$-3≈+x

x

2

y

1

(c) y=3x%-25˛+60x

x

20

y

1

P!x" ! ax 3 ! bx 2 ! cx ! d a " 0

The graphs of quadratic
 functions are parabolas.

FIGURE 7 0

y

2

x1

(a) y=≈+x+1

y

2

x1

(b) y=_2≈+3x+1

a " 0 a # 0
y ! ax 2

P!x" ! ax 2 ! bx ! c
P!x" ! mx ! b

P!x" ! 2x 6 $ x 4 ! 2
5 x 3 ! s2

nan " 0
! ! !$%, %".

n a0, a1, a2, . . . , an

P!x" ! anxn ! an$1xn$1 ! & & & ! a2x 2 ! a1x ! a0

P

CO2

CO2
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28 CHAPTER 1 FUNCTIONS AND MODELS

Polynomials are commonly used to model various quantities that occur in the natural
and social sciences. For instance, in Section 3.7 we will explain why economists often use
a polynomial to represent the cost of producing units of a commodity. In the fol-
lowing example we use a quadratic function to model the fall of a ball.

A ball is dropped from the upper observation deck of the CN Tower, 450 m
above the ground, and its height h above the ground is recorded at 1-second intervals in
Table 2. Find a model to fit the data and use the model to predict the time at which the
ball hits the ground.

SOLUTION We draw a scatter plot of the data in Figure 9 and observe that a linear model
is inappropriate. But it looks as if the data points might lie on a parabola, so we try a
quadratic model instead. Using a graphing calculator or computer algebra system (which
uses the least squares method), we obtain the following quadratic model:

In Figure 10 we plot the graph of Equation 3 together with the data points and see
that the quadratic model gives a very good fit.

The ball hits the ground when , so we solve the quadratic equation

The quadratic formula gives

The positive root is , so we predict that the ball will hit the ground after about
9.7 seconds.

Power Functions
A function of the form , where is a constant, is called a power function. We con-
sider several cases.

f !x" ! xa a

t # 9.67

t !
!0.96 " s!0.96"2 ! 4!!4.90" !449.36"

2!!4.90"

!4.90t 2 # 0.96t # 449.36 ! 0

h ! 0

FIGURE 10
Quadratic model for a falling ball

2

200

400

4 6 8 t0

FIGURE 9
Scatter plot for a falling ball

200

400

t
(seconds)

0 2 4 6 8

hh
(meters)

3 h ! 449.36 # 0.96t ! 4.90t 2

EXAMPLE 4

P!x" x

TABLE 2

Time Height
(seconds) (meters)

0 450
1 445
2 431
3 408
4 375
5 332
6 279
7 216
8 143
9 61
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SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS    29

(i) , where n is a positive integer
The graphs of for , and are shown in Figure 11. (These are poly-
nomials with only one term.) We already know the shape of the graphs of (a line
through the origin with slope 1) and [a parabola, see Example 2(b) in Section 1.1].

The general shape of the graph of depends on whether is even or odd. If
is even, then is an even function and its graph is similar to the parabola

. If is odd, then is an odd function and its graph is similar to that of

. Notice from Figure 12, however, that as increases, the graph of
becomes flatter near 0 and steeper when . (If is small, then is smaller, is
even smaller, is smaller still, and so on.)

(ii) , where n is a positive integer
The function is a root function. For it is the square root 
function , whose domain is and whose graph is the upper half of the 
parabola . [See Figure 13(a).] For other even values of n, the graph of is
similar to that of . For we have the cube root function whose
domain is (recall that every real number has a cube root) and whose graph is shown
in Figure 13(b). The graph of for n odd is similar to that of .

(b) ƒ=Œ„x

x

y

0
(1, 1)

(a) ƒ=œ„x

x

y

0
(1, 1)

FIGURE 13
Graphs of root functions

y ! s3 x!n ! 3"y ! sn x
!

f !x" ! s3 xn ! 3y ! sx
y ! sn xx ! y 2

#0, ""f !x" ! sx
n ! 2f !x" ! x 1$n ! sn x

a ! 1$n

FIGURE 12
Families of power functions

y=x$

(1, 1)(_1, 1)

y=x^
y=≈

(_1, _1)

(1, 1)

0

y

x

x

y

0

y=x#
y=x%

x 4
x 3x 2x% x % # 1

y ! xnny ! x 3
f !x" ! xnny ! x 2

f !x" ! xnn
nf !x" ! xn

Graphs of ƒ=x n for n=1, 2, 3, 4, 5

x

1

y

10

y=x%

x

1

y

10

y=x#

x

1

y

10

y=≈

x

1

y

10

y=x

x

1

y

10

y=x$

FIGURE 11

y ! x 2
y ! x

52, 3, 4n ! 1,f !x" ! xn
a ! n
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30 CHAPTER 1 FUNCTIONS AND MODELS

(iii)

The graph of the reciprocal function is shown in Figure 14. Its graph
has the equation , or , and is a hyperbola with the coordinate axes as its
asymptotes. This function arises in physics and chemistry in connection with Boyle’s
Law, which says that, when the temperature is constant, the volume of a gas is
inversely proportional to the pressure :

where C is a constant. Thus the graph of V as a function of P (see Figure 15) has the
same general shape as the right half of Figure 14.

Power functions are also used to model species-area relationships (Exercises 26–27),
illumination as a function of a distance from a light source (Exercise 25), and the period
of revolution of a planet as a function of its distance from the sun (Exercise 28).

Rational Functions
A rational function is a ratio of two polynomials:

where and are polynomials. The domain consists of all values of such that . 
A simple example of a rational function is the function , whose domain is

; this is the reciprocal function graphed in Figure 14. The function

is a rational function with domain . Its graph is shown in Figure 16.

Algebraic Functions
A function is called an algebraic function if it can be constructed using algebraic oper-
ations (such as addition, subtraction, multiplication, division, and taking roots) starting with
polynomials. Any rational function is automatically an algebraic function. Here are two
more examples:

When we sketch algebraic functions in Chapter 4, we will see that their graphs can assume
a variety of shapes. Figure 17 illustrates some of the possibilities.

t!x" !
x 4 ! 16x 2

x " sx " !x ! 2"s3 x " 1f !x" ! sx 2 " 1

f

#x $ x " #2%

f !x" !
2x 4 ! x 2 " 1

x 2 ! 4

#x $ x " 0%
f !x" ! 1&x

Q!x" " 0xQP

f !x" !
P!x"
Q!x"

f

P

V

0
FIGURE 15

Volume as a function of pressure
at constant temperature

V !
C
P

P
V

xy ! 1y ! 1&x
f !x" ! x!1 ! 1&x

a ! !1

FIGURE 14
The reciprocal function

x
1

y

10

y=∆

FIGURE 16

ƒ= 2x$-≈+1
≈-4

x

20

y

20

97909_01_ch01_p030-039.qk:97909_01_ch01_p030-039  9/20/10  4:32 PM  Page 30

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).  
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS    31

An example of an algebraic function occurs in the theory of relativity. The mass of a
particle with velocity is

where is the rest mass of the particle and km!s is the speed of light in a
vacuum.

Trigonometric Functions
Trigonometry and the trigonometric functions are reviewed on Reference Page 2 and also
in Appendix D. In calculus the convention is that radian measure is always used (except
when otherwise indicated). For example, when we use the function , it is 
understood that means the sine of the angle whose radian measure is . Thus the graphs
of the sine and cosine functions are as shown in Figure 18.

Notice that for both the sine and cosine functions the domain is and the range
is the closed interval . Thus, for all values of , we have

or, in terms of absolute values,

Also, the zeros of the sine function occur at the integer multiples of ; that is,

An important property of the sine and cosine functions is that they are periodic func-
tions and have period . This means that, for all values of ,

sin"x ! 2"# ! sin x cos"x ! 2"# ! cos x

2" x

n an integerx ! n"whensin x ! 0

"

$ cos x $ # 1$ sin x $ # 1

$1 # cos x # 1$1 # sin x # 1

x%$1, 1&
"$%, %#

(a) ƒ=sin x

π
2

5π
2

3π
2

π
2_

x

y

π0_π

1

_1 2π 3π

(b) ©=cos x

x

y

0

1

_1

π_π

2π

3π
π
2

5π
2

3π
2

π
2_

FIGURE 18

xsin x
f"x# ! sin x

c ! 3.0 & 105m0

m ! f "v# !
m0

s1 $ v 2!c 2

v

FIGURE 17

x

2
y

1

(a) ƒ=xœ„„„„x+3

x

1

y

50

(b) ©=$œ„„„„„„≈-25

x

1

y

10

(c) h(x)=x@?#(x-2)@

_3

The Reference Pages are located at the front 
and back of the book.
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32 CHAPTER 1 FUNCTIONS AND MODELS

The periodic nature of these functions makes them suitable for modeling repetitive phe-
nomena such as tides, vibrating springs, and sound waves. For instance, in Example 4 in 
Section 1.3 we will see that a reasonable model for the number of hours of daylight in
Philadelphia t days after January 1 is given by the function

The tangent function is related to the sine and cosine functions by the equation

and its graph is shown in Figure 19. It is undefined whenever , that is, when
, Its range is . Notice that the tangent function has per iod :

The remaining three trigonometric functions (cosecant, secant, and cotangent) are 
the reciprocals of the sine, cosine, and tangent functions. Their graphs are shown in 
Appendix D.

Exponential Functions
The exponential functions are the functions of the form , where the base is a
positive constant. The graphs of and are shown in Figure 20. In both cases
the domain is and the range is .

Exponential functions will be studied in detail in Section 1.5, and we will see that they
are useful for modeling many natural phenomena, such as population growth ( if )
and radioactive decay ( if 

Logarithmic Functions
The logarithmic functions , where the base is a positive constant, are the 
inverse functions of the exponential functions. They will be studied in Section 1.6. Figure
21 shows the graphs of four logarithmic functions with various bases. In each case the 
domain is , the range is , and the function increases slowly when .

Classify the following functions as one of the types of functions that we
have discussed.
(a) (b)

(c) (d)

SOLUTION
(a) is an exponential function. (The is the exponent.)
(b) is a power function. (The is the base.) We could also consider it to be a
polynomial of degree 5.

(c) is an algebraic function.

(d) is a polynomial of degree 4.u!t" ! 1 ! t " 5t 4

h!x" !
1 " x

1 ! sx

xt!x" ! x 5

EXAMPLE 5

xf !x" ! 5x

u!t" ! 1 ! t " 5t 4h!x" !
1 " x

1 ! sx

t!x" ! x 5f !x" ! 5x

x # 1!!$, $"!0, $"

af !x" ! loga x

a % 1".
a # 1

!0, $"!!$, $"
y ! !0.5"xy ! 2x

af !x" ! ax

for all xtan!x " &" ! tan x

&!!$, $"' 3&#2, . . . .x ! ' &#2
cos x ! 0

tan x !
sin x
cos x

L!t" ! 12 " 2.8 sin$ 2&

365
!t ! 80"%

FIGURE 19
y=tan x

x

y

π0_π

1

π
 2

3π
 2

π
 2_3π 

2_

FIGURE 20

y

x
1

10

y

x
1

10
(a) y=2® (b) y=(0.5)®

FIGURE 21
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y=log£ x
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SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS    33

1–2 Classify each function as a power function, root function,
polynomial (state its degree), rational function, algebraic function,
trigonometric function, exponential function, or logarithmic 
function.

1. (a) (b)

(c) (d)

(e) (f)

2. (a) (b)

(c) (d)

(e) (f)

3–4 Match each equation with its graph. Explain your choices.
(Don’t use a computer or graphing calculator.)

3. (a) (b) (c) 

4. (a) (b)
(c) (d)

5. (a) Find an equation for the family of linear functions with
slope 2 and sketch several members of the family.

(b) Find an equation for the family of linear functions such that
and sketch several members of the family.

(c) Which function belongs to both families?
f !2" ! 1

G

f

g

F
y

x

y ! s3 xy ! x 3
y ! 3xy ! 3x

f

0

g
h

y

x

y ! x 8y ! x 5y ! x 2

y !
sx 3 ! 1
1 " s3 xy !

s
1 " s

y ! tan t ! cos ty ! x 2!2 ! x 3"

y ! x#y ! # x

w!$" ! sin $ cos2$v!t" ! 5 t

u!t" ! 1 ! 1.1t " 2.54t 2h!x" !
2x 3

1 ! x 2

t!x" ! s4 xf !x" ! log2 x

6. What do all members of the family of linear functions
have in common? Sketch several mem-

bers of the family.

7. What do all members of the family of linear functions
have in common? Sketch several members of 

the family.

8. Find expressions for the quadratic functions whose graphs are
shown.

9. Find an expression for a cubic function if and
.

10. Recent studies indicate that the average surface tempera-
ture of the earth has been rising steadily. Some scientists 
have modeled the temperature by the linear function

, where is temperature in and
represents years since 1900.
(a) What do the slope and -intercept represent?
(b) Use the equation to predict the average global surface 

temperature in 2100.

11. If the recommended adult dosage for a drug is ( in mg), then
to determine the appropriate dosage for a child of age ,
pharmacists use the equation . Suppose
the dosage for an adult is 200 mg.
(a) Find the slope of the graph of . What does it represent?
(b) What is the dosage for a newborn?

12. The manager of a weekend flea market knows from past expe-
rience that if he charges dollars for a rental space at the mar-
ket, then the number of spaces he can rent is given by the
equation .
(a) Sketch a graph of this linear function. (Remember that the

rental charge per space and the number of spaces rented
can’t be negative quantities.)

(b) What do the slope, the -intercept, and the -intercept of
the graph represent?

13. The relationship between the Fahrenheit and Celsius
temperature scales is given by the linear function .
(a) Sketch a graph of this function.
(b) What is the slope of the graph and what does it represent?

What is the F-intercept and what does it represent?

14. Jason leaves Detroit at 2:00 PM and drives at a constant speed
west along I-96. He passes Ann Arbor, 40 mi from Detroit, at
2:50 PM.
(a) Express the distance traveled in terms of the time elapsed.

xy

F ! 9
5C " 32

!C"!F"

y ! 200 ! 4x
y

x

c

c ! 0.0417D!a " 1"
ac

D

T

t%CTT ! 0.02t " 8.50

f !!1" ! f !0" ! f !2" ! 0
f !1" ! 6f

y

(0, 1)

(1, _2.5)

(_2, 2)
y

x0

(4, 2)

f

g
x0

3

f !x" ! c ! x

f !x" ! 1 " m!x " 3"

1.2 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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34 CHAPTER 1 FUNCTIONS AND MODELS

(b) Draw the graph of the equation in part (a).
(c) What is the slope of this line? What does it represent?

15. Biologists have noticed that the chirping rate of crickets of a
certain species is related to temperature, and the relationship
appears to be very nearly linear. A cricket produces 113 chirps
per minute at and 173 chirps per minute at .
(a) Find a linear equation that models the temperature T as a

function of the number of chirps per minute N.
(b) What is the slope of the graph? What does it represent?
(c) If the crickets are chirping at 150 chirps per minute,

estimate the temperature.

16. The manager of a furniture factory finds that it costs $2200 
to manufacture 100 chairs in one day and $4800 to produce
300 chairs in one day.
(a) Express the cost as a function of the number of chairs pro-

duced, assuming that it is linear. Then sketch the graph.
(b) What is the slope of the graph and what does it represent?
(c) What is the y-intercept of the graph and what does it 

represent?

17. At the surface of the ocean, the water pressure is the same as
the air pressure above the water, . Below the surface,
the water pressure increases by for every 10 ft of
descent.
(a) Express the water pressure as a function of the depth below

the ocean surface.
(b) At what depth is the pressure ?

18. The monthly cost of driving a car depends on the number of
miles driven. Lynn found that in May it cost her $380 to drive
480 mi and in June it cost her $460 to drive 800 mi.
(a) Express the monthly cost as a function of the distance

driven assuming that a linear relationship gives a suitable
model.

(b) Use part (a) to predict the cost of driving 1500 miles per
month.

(c) Draw the graph of the linear function. What does the slope
represent?

(d) What does the C-intercept represent?
(e) Why does a linear function give a suitable model in this 

situation?

19–20 For each scatter plot, decide what type of function you
might choose as a model for the data. Explain your choices.

19. (a) (b)

0 x

y

0 x

y

d,
C

100 lb!in2

4.34 lb!in2
15 lb!in2

80!F70!F

20. (a) (b)

; 21. The table shows (lifetime) peptic ulcer rates (per 100 popu-
lation) for various family incomes as reported by the National
Health Interview Survey.

(a) Make a scatter plot of these data and decide whether a 
linear model is appropriate.

(b) Find and graph a linear model using the first and last data
points.

(c) Find and graph the least squares regression line.
(d) Use the linear model in part (c) to estimate the ulcer rate

for an income of $25,000.
(e) According to the model, how likely is someone with an

income of $80,000 to suffer from peptic ulcers?
(f) Do you think it would be reasonable to apply the model to

someone with an income of $200,000?

; 22. Biologists have observed that the chirping rate of crickets of a
certain species appears to be related to temperature. The table
shows the chirping rates for various temperatures.

(a) Make a scatter plot of the data.
(b) Find and graph the regression line.
(c) Use the linear model in part (b) to estimate the chirping rate

at .100!F

0 x

y

0 x

y

Ulcer rate
Income (per 100 population)

$4,000 14.1
$6,000 13.0
$8,000 13.4

$12,000 12.5
$16,000 12.0
$20,000 12.4
$30,000 10.5
$45,000 9.4
$60,000 8.2

Temperature Chirping rate Temperature Chirping rate
(°F) (chirps!min) (°F)  (chirps!min)

50 20 75 140
55 46 80 173
60 79 85 198
65 91 90 211
70 113
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SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS    35

; 23. The table gives the winning heights for the men’s Olympic
pole vault competitions up to the year 2004.

(a) Make a scatter plot and decide whether a linear model is
appropriate.

(b) Find and graph the regression line.
(c) Use the linear model to predict the height of the winning

pole vault at the 2008 Olympics and compare with the
actual winning height of 5.96 meters.

(d) Is it reasonable to use the model to predict the winning
height at the 2100 Olympics?

; 24. The table shows the percentage of the population of
Argentina that has lived in rural areas from 1955 to 2000.
Find a model for the data and use it to estimate the rural per-
centage in 1988 and 2002.

25. Many physical quantities are connected by inverse square
laws, that is, by power functions of the form . In
particular, the illumination of an object by a light source is
inversely proportional to the square of the distance from the
source. Suppose that after dark you are in a room with just
one lamp and you are trying to read a book. The light is too
dim and so you move halfway to the lamp. How much
brighter is the light?

26. It makes sense that the larger the area of a region, the larger
the number of species that inhabit the region. Many

f !x" ! kx!2

ecologists have modeled the species-area relation with a
power function and, in particular, the number of species of
bats living in caves in central Mexico has been related to the
surface area of the caves by the equation .
(a) The cave called Misión Imposible near Puebla, Mexico,

has a surface area of . How many species of
bats would you expect to find in that cave?

(b) If you discover that four species of bats live in a cave,
estimate the area of the cave.

; 27. The table shows the number of species of reptiles and
amphibians inhabiting Caribbean islands and the area of
the island in square miles.

(a) Use a power function to model as a function of .
(b) The Caribbean island of Dominica has area . How

many species of reptiles and amphibians would you
expect to find on Dominica?

; 28. The table shows the mean (average) distances d of the plan-
ets from the sun (taking the unit of measurement to be the
distance from the earth to the sun) and their periods T (time
of revolution in years).

(a) Fit a power model to the data.
(b) Kepler’s Third Law of Planetary Motion states that

“The square of the period of revolution of a planet 
is propor tional to the cube of its mean distance from
the sun.” 
Does your model corroborate Kepler’s Third Law?

A S ! 0.7A0.3

S

A ! 60 m2

291 m2
AN

A
N

Year Height (m) Year Height (m)

1896 3.30 1960 4.70
1900 3.30 1964 5.10
1904 3.50 1968 5.40
1908 3.71 1972 5.64
1912 3.95 1976 5.64
1920 4.09 1980 5.78
1924 3.95 1984 5.75
1928 4.20 1988 5.90
1932 4.31 1992 5.87
1936 4.35 1996 5.92
1948 4.30 2000 5.90
1952 4.55 2004 5.95
1956 4.56

Percentage Percentage
Year rural Year rural

1955 30.4 1980 17.1
1960 26.4 1985 15.0
1965 23.6 1990 13.0
1970 21.1 1995 11.7
1975 19.0 2000 10.5

Planet d T

Mercury 0.387 0.241
Venus 0.723 0.615
Earth 1.000 1.000
Mars 1.523 1.881
Jupiter 5.203 11.861
Saturn 9.541 29.457
Uranus 19.190 84.008
Neptune 30.086 164.784

Island

Saba 4 5
Monserrat 40 9
Puerto Rico 3,459 40
Jamaica 4,411 39
Hispaniola 29,418 84
Cuba 44,218 76

NA
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36 CHAPTER 1 FUNCTIONS AND MODELS

In this section we start with the basic functions we discussed in Section 1.2 and obtain new
functions by shifting, stretching, and reflecting their graphs. We also show how to combine
pairs of functions by the standard arithmetic operations and by composition.

Transformations of Functions
By applying certain transformations to the graph of a given function we can obtain the
graphs of certain related functions. This will give us the ability to sketch the graphs of 
many functions quickly by hand. It will also enable us to write equations for given graphs.
Let’s first consider translations. If c is a positive number, then the graph of is
just the graph of shifted upward a distance of c units (because each y-coordinate
is increased by the same number c). Likewise, if , where , then the
value of at x is the same as the value of at (c units to the left of x). There-
fore the graph of is just the graph of shifted units to the right (see
Figure 1).

Vertical and Horizontal Shifts Suppose . To obtain the graph of

Now let’s consider the stretching and reflecting transformations. If , then the 
graph of is the graph of stretched by a factor of c in the vertical 
direction (because each y-coordinate is multiplied by the same number c). The graph of

is the graph of reflected about the -axis because the point is y ! !f !x" y ! f !x" x !x, y"

y ! f !x"y ! cf !x"
c " 1

FIGURE 2
Stretching and reflecting the graph of ƒ

y=   ƒ1
c

x

y

0

y=f(_x)
y=ƒ

y=_ƒ

y=cƒ
(c>1)

FIGURE 1
Translating the graph of ƒ

x

y

0

y=f(x-c)y=f(x+c) y =ƒ

y=ƒ-c

y=ƒ+c

c

c

c c

y ! f !x # c", shift the graph of y ! f !x" a distance c units to the left
y ! f !x ! c", shift the graph of y ! f !x" a distance c units to the right
y ! f !x" ! c, shift the graph of y ! f !x" a distance c units downward
y ! f !x" # c, shift the graph of y ! f !x" a distance c units upward

c " 0

cy ! f !x"y ! f !x ! c"
x ! cft

c " 0t!x" ! f !x ! c"
y ! f !x"

y ! f !x" # c

1.3 New Functions from Old Functions
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replaced by the point . (See Figure 2 and the following chart, where the results of
other stretching, shrinking, and reflecting transformations are also given.)

Vertical and Horizontal Stretching and Reflecting Suppose . To obtain the 
graph of

Figure 3 illustrates these stretching transformations when applied to the cosine function
with . For instance, in order to get the graph of we multiply the y-coordi-
nate of each point on the graph of by 2. This means that the graph of
gets stretched vertically by a factor of 2.

Given the graph of , use transformations to graph ,
, , , and .

SOLUTION The graph of the square root function , obtained from Figure 13(a) 
in Section 1.2, is shown in Figure 4(a). In the other parts of the figure we sketch

by shifting 2 units downward, by shifting 2 units to the right,
by reflecting about the -axis, by stretching vertically by a factor 

of 2, and by reflecting about the -axis.

(a) y=œ„x (b) y=œ„-2x (c) y=œ„„„„x-2 (d) y=_œ„x (e) y=2œ„x (f ) y=œ„„_x

0 x

y

0 x

y

0 x

y

20 x

y

_2

0 x

y

1

10 x

y

y ! s!x y
y ! !sx x y ! 2sx
y ! sx ! 2 y ! sx ! 2

y ! sx
y ! s!x

y ! sx ! 2
y ! sx ! 2 y ! !sx y ! 2sx
v EXAMPLE 1 y ! sx

FIGURE 3

x

1
2

y

0

y=cos x
y=cos 2x

y=cos    x1
2

x

1

2

y

0

y=2 cos x
y=cos x

y=    cos x1
2

1

y ! cos x y ! cos x
c ! 2 y ! 2 cos x

y ! f !!x", reflect the graph of y ! f !x" about the y-axis
y ! !f !x", reflect the graph of y ! f !x" about the x-axis
y ! f !x#c", stretch the graph of y ! f !x" horizontally by a factor of c
y ! f !cx", shrink the graph of y ! f !x" horizontally by a factor of c
y ! !1#c" f !x", shrink the graph of y ! f !x" vertically by a factor of c
y ! cf !x", stretch the graph of y ! f !x" vertically by a factor of c

c " 1

!x, !y"

SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS    37

FIGURE 4
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38 CHAPTER 1 FUNCTIONS AND MODELS

Sketch the graph of the function .

SOLUTION Completing the square, we write the equation of the graph as

This means we obtain the desired graph by starting with the parabola and shifting
3 units to the left and then 1 unit upward (see Figure 5).

Sketch the graphs of the following functions.
(a) (b)

SOLUTION
(a) We obtain the graph of from that of by compressing horizon-
tally by a factor of 2. (See Figures 6 and 7.) Thus, whereas the period of is ,
the period of is .

(b) To obtain the graph of , we again start with . We reflect 
about the -axis to get the graph of and then we shift 1 unit upward to get

(See Figure 8.)

Figure 9 shows graphs of the number of hours of daylight as functions of the
time of the year at several latitudes. Given that Philadelphia is located at approximately

latitude, find a function that models the length of daylight at Philadelphia.40!N

EXAMPLE 4

FIGURE 8
x

1
2
y

π0 2π

y=1-sin x

π
2

3π
2

y ! 1 " sin x.
x y ! " sin x

y ! 1 " sin x y ! sin x

FIGURE 6

x0

y

1

π
2 π

y=sin x

FIGURE 7

x0

y

1

π
2

π
4

π

y=sin 2x

y ! sin 2x 2#!2 ! #
y ! sin x 2#

y ! sin 2x y ! sin x

y ! sin 2x y ! 1 " sin x
EXAMPLE 3

FIGURE 5 (a) y=≈ (b) y=(x+3)@+1

x0_1_3

1

y

(_3, 1)
x0

y

y ! x 2

y ! x 2 $ 6x $ 10 ! "x $ 3#2 $ 1

EXAMPLE 2 f (x) ! x 2 $ 6x $ 10
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SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS    39

SOLUTION Notice that each curve resembles a shifted and stretched sine function. By
looking at the blue curve we see that, at the latitude of Philadelphia, daylight lasts about
14.8 hours on June 21 and 9.2 hours on December 21, so the amplitude of the curve (the
factor by which we have to stretch the sine curve vertically) is .

By what factor do we need to stretch the sine curve horizontally if we measure the
time t in days? Because there are about 365 days in a year, the period of our model
should be 365. But the period of is , so the horizontal stretching factor is

.
We also notice that the curve begins its cycle on March 21, the 80th day of the year,

so we have to shift the curve 80 units to the right. In addition, we shift it 12 units
upward. Therefore we model the length of daylight in Philadelphia on the t th day of the
year by the function

Another transformation of some interest is taking the absolute value of a function. If
, then according to the definition of absolute value, when and
when . This tells us how to get the graph of from the graph

of : The part of the graph that lies above the -axis remains the same; the part that
lies below the -axis is reflected about the -axis.

Sketch the graph of the function .

SOLUTION We first graph the parabola in Figure 10(a) by shifting the parabola
downward 1 unit. We see that the graph lies below the -axis when ,

so we reflect that part of the graph about the -axis to obtain the graph of
in Figure 10(b).

Combinations of Functions
Two functions and can be combined to form new functions , , , and 
in a manner similar to the way we add, subtract, multiply, and divide real numbers. The
sum and difference functions are defined by

EXAMPLE 5v

! f ! t"!x" ! f !x" ! t!x"! f " t"!x" ! f !x" " t!x"

f#tftf ! tf " ttf

y ! $ x 2 ! 1$x
!1 # x # 1xy ! x 2

y ! x 2 ! 1

y ! $ x 2 ! 1 $

xx
xy ! f !x"

y ! $ f !x"$f !x" # 0y ! !f !x"
f !x" $ 0y ! f !x"y ! $ f !x"$

L!t" ! 12 " 2.8 sin% 2%

365
!t ! 80"&

c ! 2%#365
2%y ! sin t

1
2 !14.8 ! 9.2" ! 2.8

FIGURE 9
Graph of the length of daylight

from March 21 through December 21
at various latitudes

Lucia C. Harrison, Daylight, Twilight, Darkness and Time  
(New York, 1935) page 40.

0
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4

6

8

10

12

14

16

18

20

Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Hours

60° N

50° N
40° N
30° N
20° N

FIGURE 10

0 x

y

_1 1

(a) y=≈-1

(b) y=| ≈-1 |

0 x

y

_1 1
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40 CHAPTER 1 FUNCTIONS AND MODELS

If the domain of is A and the domain of is B, then the domain of is the intersec-
tion because both and have to be defined. For example, the domain of

is and the domain of is , so the domain
of is .

Similarly, the product and quotient functions are defined by

The domain of is , but we can’t divide by 0 and so the domain of is
. For instance, if and , then the domain of

the rational function is , or . 
There is another way of combining two functions to obtain a new function. For exam-

ple, suppose that and . Since y is a function of u and u
is, in turn, a function of x, it follows that is ultimately a function of x. We compute this
by substitution:

The procedure is called composition because the new function is composed of the two
given functions and .

In general, given any two functions and , we start with a number x in the domain of
and find its image . If this number is in the domain of , then we can calculate

the value of . Notice that the output of one function is used as the input to the next
function. The result is a new function obtained by substituting into . It is
called the composition (or composite) of and and is denoted by (“ f circle t”).

Definition Given two functions and , the composite function (also called
the composition of and ) is defined by

The domain of is the set of all in the domain of such that is in the domain
of . In other words, is defined whenever both and are defined. Fig-
ure 11 shows how to picture in terms of machines.

If and , find the composite functions and .

SOLUTION We have

| NOTE You can see from Example 6 that, in general, . Remember, the 
notation means that the function is applied first and then is applied second. In
Example 6, is the function that first subtracts 3 and then squares; is the function
that first squares and then subtracts 3.

!x ! A " B " t#x$ ! 0%
!x " x ! 1%

t ! ff ! t
ftf ! t

f ! t ! t ! f

EXAMPLE 6

# t ! f $#x$ " t# f #x$$ " t#x 2 $ " x 2 ! 3

# f ! t$#x$ " f # t#x$$ " f #x ! 3$ " #x ! 3$2

t ! ff ! tt#x$ " x ! 3f #x$ " x 2

f ! t
f # t#x$$t#x$# f ! t$#x$f

t#x$txf ! t

# f ! t$#x$ " f # t#x$$

tf
f ! ttf

f ! ttf
fth#x$ " f # t#x$$

f # t#x$$
ft#x$t#x$t

tf
tf

y " f #u$ " f # t#x$$ " f #x 2 " 1$ " sx 2 " 1

y
u " t#x$ " x 2 " 1y " f #u$ " su

#!#, 1$ # #1, #$# f&t$#x$ " x 2&#x ! 1$
t#x$ " x ! 1f #x$ " x 2

f&tA " Bft

' f
t(#x$ "

f #x$
t#x$

# ft$#x$ " f #x$t#x$

A " B " )0, 2*# f " t$#x$ " sx " s2 ! x
B " #!#, 2*t#x$ " s2 ! xA " )0, #$f #x$ " sx

t#x$f #x$A " B
f " ttf

f

g

FIGURE 11

f{©}

f • g

The f • g machine is composed of 
the g machine (first) and then
the f machine.

x

©

(input)

(output)
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SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS    41

If and , find each function and its domain.
(a) (b) (c) (d) 

SOLUTION

(a)

The domain of is .

(b)

For to be defined we must have . For to be defined we must have
If , then . , that is, , or . Thus we have , so the domain of

is the closed interval .

(c)

The domain of is .

(d)

This expression is defined when both and The first
inequality means , and the second is equivalent to , or , or

. Thus , so the domain of is the closed interval .

It is possible to take the composition of three or more functions. For instance, the com-
posite function is found by first applying , then , and then as follows:

Find if , and .

SOLUTION

So far we have used composition to build complicated functions from simpler ones. But
in calculus it is often useful to be able to decompose a complicated function into simpler
ones, as in the following example.

Given , find functions , , and h such that .

SOLUTION Since , the formula for F says: First add 9, then take the
cosine of the result, and finally square. So we let

Then

EXAMPLE 9

EXAMPLE 8

EXAMPLE 7v
t ! tf ! ft ! ff ! t

t!x" ! s2 ! xf !x" ! sx

! #cos!x " 9"$2 ! F!x"

! f ! t ! h"!x" ! f !t!h!x""" ! f !t!x " 9"" ! f !cos!x " 9""

f !x" ! x 2t!x" ! cos xh!x" ! x " 9

F!x" ! #cos!x " 9"$2

F ! f ! t ! htfF!x" ! cos2!x " 9"

! f !!x " 3"10 " !
!x " 3"10

!x " 3"10 " 1

! f ! t ! h"!x" ! f !t!h!x""" ! f !t!x " 3""

h!x" ! x " 3f !x" ! x%!x " 1", t!x" ! x 10f ! t ! h

! f ! t ! h"!x" ! f !t!h!x"""

fthf ! t ! h

#!2, 2$t ! t!2 # x # 2x $ !2
2 ! x # 4s2 ! x # 2x # 2

2 ! s2 ! x $ 0.2 ! x $ 0

!t ! t"!x" ! t!t!x"" ! t(s2 ! x ) ! s2 ! s2 ! x

#0, %"f ! f

! f ! f "!x" ! f ! f !x"" ! f (sx ) ! ssx ! s4 x

#0, 4$t ! f
0 # x # 4x # 4sx # 22 ! sx $ 0a 2 # b 20 # a # b

s2 ! sxx $ 0sx

!t ! f "!x" ! t! f !x"" ! t(sx ) ! s2 ! sx

! &x ' x # 2( ! !!%, 2$&x ' 2 ! x $ 0(f ! t

! f ! t"!x" ! f !t!x"" ! f (s2 ! x ) ! ss2 ! x ! s4 2 ! x
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42 CHAPTER 1 FUNCTIONS AND MODELS

1. Suppose the graph of is given. Write equations for the graphs
that are obtained from the graph of as follows.
(a) Shift 3 units upward. (b) Shift 3 units downward.
(c) Shift 3 units to the right. (d) Shift 3 units to the left.
(e) Reflect about the -axis. (f) Reflect about the -axis.
(g) Stretch vertically by a factor of 3.
(h) Shrink vertically by a factor of 3.

2. Explain how each graph is obtained from the graph of .
(a) (b)
(c) (d)
(e) (f)

3. The graph of is given. Match each equation with its
graph and give reasons for your choices.
(a) (b)
(c) (d)
(e)

4. The graph of is given. Draw the graphs of the following
functions.
(a) (b)
(c) (d)

5. The graph of is given. Use it to graph the following 
functions.
(a) (b)
(c) (d)

x

y

0 1

1

y ! !f !!x"y ! f !!x"
y ! f ( 1

2 x)y ! f !2x"

f

x

y

0 1

2

y ! f ( 1
3 x) " 1y ! !2 f !x"

y ! f !x ! 2"y ! f !x" ! 2

f

!@

$

%

#f

y

3

_3

6

0 x3_3_6 6

y ! 2 f !x " 6"
y ! !f !x " 4"y ! 1

3 f !x"
y ! f !x" " 3y ! f !x ! 4"

y ! f !x"
y ! 8 f ( 1

8 x)y ! !f !x" ! 1
y ! f !8x"y ! 8 f !x"
y ! f !x " 8"y ! f !x" " 8

y ! f !x"

yx

f
f 6–7 The graph of is given. Use transformations to

create a function whose graph is as shown.

6. 7.

8. (a) How is the graph of related to the graph of
? Use your answer and Figure 6 to sketch the

graph of .
(b) How is the graph of related to the graph of

? Use your answer and Figure 4(a) to sketch the
graph of .

9–24 Graph the function by hand, not by plotting points, but by
starting with the graph of one of the standard functions given in Sec-
tion 1.2, and then applying the appropriate transformations.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. The city of New Orleans is located at latitude . Use Fig-
ure 9 to find a function that models the number of hours of
daylight at New Orleans as a function of the time of year. To
check the accuracy of your model, use the fact that on March 31
the sun rises at 5:51 AM and sets at 6:18 PM in New Orleans. 

_4 _1

_2.5

x

y

_1 0

y ! # x # ! 2

30#N

y ! # cos $x #y ! # sx ! 1 #
y !

1
4

tan$x !
$

4 %y ! # x ! 2 #

y ! 1 ! 2x ! x 2

y ! 1 ! 2sx " 3y ! 1
2!1 ! cos x"

y !
2
x

! 2y ! sin(1
2 x)

y ! 4 sin 3xy ! sx ! 2 ! 1

y ! x 2 " 6x " 4y ! !s3 x

y ! !x ! 1"3y !
1

x " 2

y ! s3x ! x 2

y ! 1 " sx
y ! sx

y ! 1 " sx
y ! 2 sin x

y ! sin x
y ! 2 sin x

5 x

y

20

3

1.5 y=œ„„„„„„3x-≈

x

y

30

1.3 Exercises

1. Homework Hints available at stewartcalculus.com
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SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS    43

26. A variable star is one whose brightness alternately increases
and decreases. For the most visible variable star, Delta Cephei,
the time between periods of maximum brightness is 5.4 days,
the average brightness (or magnitude) of the star is 4.0, and its
brightness varies by magnitude. Find a function that
models the brightness of Delta Cephei as a function of time.

27. (a) How is the graph of related to the graph of ?
(b) Sketch the graph of .
(c) Sketch the graph of .

28. Use the given graph of to sketch the graph of .
Which features of are the most important in sketching

? Explain how they are used.

29–30 Find (a) , (b) , (c) , and (d) and state their
domains.

29. ,  

30. ,  

31–36 Find the functions (a) , (b) , (c) , and (d)
and their domains.

31. ,  

32. ,  

33. ,  

34. ,  

35. ,  

36. ,  

37–40 Find 

37. ,  ,  

38. ,  ,  

39. ,  ,  

40. ,  ,  h!x" ! s3 xt!x" !
x

x ! 1
f !x" ! tan x

h!x" ! x 3 " 2t!x" ! x 2f !x" ! sx ! 3

h!x" ! sxt!x" ! 2 xf !x" ! # x ! 4 #
h!x" ! x 2t!x" ! sin xf !x" ! 3x ! 2

f ! t ! h.

t!x" ! sin 2xf !x" !
x

1 " x

t!x" !
x " 1
x " 2

f !x" ! x "
1
x

t!x" ! s3 1 ! xf !x" ! sx
t!x" ! cos xf !x" ! 1 ! 3x

t!x" ! x 2 " 3x " 4f !x" ! x ! 2

t!x" ! 2x " 1f !x" ! x 2 ! 1

t ! tf ! ft ! ff ! t

t!x" ! sx 2 ! 1f !x" ! s3 ! x

t!x" ! 3x 2 ! 1f !x" ! x 3 " 2x 2

f$tftf ! tf " t

1

10 x

y
y ! 1$f !x"

f
y ! 1$f !x"f

y ! s# x #
y ! sin # x #

fy ! f (# x #)

#0.35

x 1 2 3 4 5 6

3 1 4 2 2 5

6 3 2 1 2 3t!x"

f !x"

41–46 Express the function in the form 

41. 42.

43. 44.

45. 46.

47–49 Express the function in the form 

47. 48.

49.

50. Use the table to evaluate each expression.
(a) (b) (c) 
(d) (e) (f)

51. Use the given graphs of and to evaluate each expression, 
or explain why it is undefined.
(a) (b) (c) 
(d) (e) (f)

52. Use the given graphs of and to estimate the value of
for . Use these estimates to

sketch a rough graph of .

f ! t.

v!t" ! sec!t 2" tan!t 2"

g

f

x

y

0 1

1

f ! t
x ! !5, !4, !3, . . . , 5

f t
f !t!x""

x

y

0

fg

2

2

! f ! f "!4"!t ! t"!!2"!t ! f "!6"
! f ! t"!0"t! f !0""f !t!2""

tf

! f ! t"!6"!t ! f "!3"t!t!1""
f ! f !1""t! f !1""f !t!1""

H!x" ! sec4(sx )
H!x" ! s8 2 " # x #R!x" ! ssx ! 1

f ! t ! h.

u!t" !
tan t

1 " tan t

G!x" ! % x
1 " x

3F!x" !
s3 x

1 " s3 x

F!x" ! cos2xF!x" ! !2x " x 2"4
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44 CHAPTER 1 FUNCTIONS AND MODELS

53. A stone is dropped into a lake, creating a circular ripple that
travels outward at a speed of .
(a) Express the radius of this circle as a function of the 

time ( in seconds).
(b) If is the area of this circle as a function of the radius, find

and interpret it.

54. A spherical balloon is being inflated and the radius of the bal-
loon is increasing at a rate of .
(a) Express the radius of the balloon as a function of the 

time ( in seconds).
(b) If is the volume of the balloon as a function of the radius,

find and interpret it.

55. A ship is moving at a speed of parallel to a straight
shoreline. The ship is 6 km from shore and it passes a light-
house at noon.
(a) Express the distance between the lighthouse and the ship

as a function of , the distance the ship has traveled since
noon; that is, find so that .

(b) Express as a function of , the time elapsed since noon;
that is, find so that .

(c) Find . What does this function represent?

56. An airplane is flying at a speed of at an altitude of
one mile and passes directly over a radar station at time .
(a) Express the horizontal distance ( in miles) that the plane

has flown as a function of .
(b) Express the distance between the plane and the radar 

station as a function of .
(c) Use composition to express as a function of .

57. The Heaviside function H is defined by

It is used in the study of electric circuits to represent the
sudden surge of electric current, or voltage, when a switch is
instantaneously turned on.
(a) Sketch the graph of the Heaviside function.
(b) Sketch the graph of the voltage in a circuit if the 

switch is turned on at time and 120 volts are applied
instantaneously to the circuit. Write a formula for in
terms of .H!t"

V!t"
t ! 0

V!t"

H!t" ! #0
1

if t ! 0
if t " 0

s t
d

s
t

d
t ! 0

350 mi$h

f ! t
t d ! t!t"

d t
f s ! f !d"

d
s

30 km$h

V ! r
V
t

r
2 cm$s

A ! r
A
t

r
60 cm$s

(c) Sketch the graph of the voltage in a circuit if the
switch is turned on at time seconds and 240 volts are
applied instantaneously to the circuit. Write a formula for

in terms of . (Note that starting at corre -
sponds to a translation.)

58. The Heaviside function defined in Exercise 57 can also be used
to define the ramp function , which represents a
gradual increase in voltage or current in a circuit.
(a) Sketch the graph of the ramp function .
(b) Sketch the graph of the voltage in a circuit if the

switch is turned on at time and the voltage is gradu-
ally increased to 120 volts over a 60-second time interval.
Write a formula for in terms of for .

(c) Sketch the graph of the voltage in a circuit if the
switch is turned on at time seconds and the voltage is
gradually increased to 100 volts over a period of
25 seconds. Write a formula for in terms of for

.

59. Let and be linear functions with equations
and . Is also a linear function? If so,
what is the slope of its graph?

60. If you invest dollars at 4% interest compounded annually,
then the amount of the investment after one year is

. Find , , and . What
do these compositions represent? Find a formula for the com-
position of copies of .

61. (a) If and , find a function
such that . (Think about what operations you

would have to perform on the formula for to end up with
the formula for .)

(b) If and , find a function
such that .

62. If and , find a function such that
.

63. Suppose t is an even function and let . Is h always an
even function?

64. Suppose t is an odd function and let . Is h always an
odd function? What if is odd? What if is even?

t ! 5
V!t"

ff
h ! f ! t

h ! f ! t
t ! f ! h

th!x" ! 4x # 1f !x" ! x $ 4

f ! t ! ht
h!x" ! 3x 2 $ 3x $ 2f !x" ! 3x $ 5

h
t

f ! t ! hf
h!x" ! 4x 2 $ 4x $ 7t!x" ! 2x $ 1

An

A ! A ! A ! AA ! A ! AA ! AA!x" ! 1.04x
A!x"

x

f ! tt!x" ! m2x $ b2

f !x" ! m1x $ b1tf

t % 32
H!t"V!t"

t ! 7
V!t"

t % 60H!t"V!t"

t ! 0
V!t"

y ! tH!t"

y ! ctH!t"

t ! 5H!t"V!t"

In this section we assume that you have access to a graphing calculator or a computer with
graphing software. We will see that the use of such a device enables us to graph more com-
plicated functions and to solve more complex problems than would otherwise be possible.
We also point out some of the pitfalls that can occur with these machines.

Graphing calculators and computers can give very accurate graphs of functions. But we
will see in Chapter 4 that only through the use of calculus can we be sure that we have
uncovered all the interesting aspects of a graph.

A graphing calculator or computer displays a rectangular portion of the graph of a func-
tion in a display window or viewing screen, which we refer to as a viewing rectangle.
The default screen often gives an incomplete or misleading picture, so it is important to

1.4 Graphing Calculators and Computers
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choose the viewing rectangle with care. If we choose the -values to range from a mini-
mum value of to a maximum value of and the -values to range from
a minimum of to a maximum of , then the visible portion of the graph
lies in the rectangle

shown in Figure 1. We refer to this rectangle as the by viewing rectangle.

The machine draws the graph of a function much as you would. It plots points of the
form for a certain number of equally spaced values of between and . If an 
-value is not in the domain of , or if lies outside the viewing rectangle, it moves on

to the next -value. The machine connects each point to the preceding plotted point to form
a representation of the graph of .

Draw the graph of the function in each of the following
viewing rectangles.
(a) by (b) by 
(c) by (d) by 

SOLUTION For part (a) we select the range by setting min , max , 
min and max . The resulting graph is shown in Figure 2(a). The display

window is blank! A moment’s thought provides the explanation: Notice that for
all , so for all . Thus the range of the function is . This
means that the graph of lies entirely outside the viewing rectangle by .

The graphs for the viewing rectangles in parts (b), (c), and (d) are also shown in 
Figure 2. Observe that we get a more complete picture in parts (c) and (d), but in part (d)
it is not clear that the -intercept is 3.

We see from Example 1 that the choice of a viewing rectangle can make a big differ-
ence in the appearance of a graph. Often it’s necessary to change to a larger viewing 
rectangle to obtain a more complete picture, a more global view, of the graph. In the next
example we see that knowledge of the domain and range of a function sometimes provides
us with enough information to select a good viewing rectangle.

x

FIGURE 1
The viewing rectangle !a, b" by !c, d"

y=d

x=a x=b

y=c

(a, d ) (b, d )

(a, c )(b, c)

EXAMPLE 1

FIGURE 2 Graphs of ƒ=≈+3
(b) !_4, 4" by !_4, 4"

4

_4

_4 4

(c) !_10, 10" by !_5, 30"

30

_5

_10 10

(d) !_50, 50" by !_100, 1000"

1000

_100
_50 50

y

!!2, 2"!!2, 2"f
!3, "#f $x# ! x2 # 3xx 2 # 3 $ 3x

x 2 $ 0
! 2Y! !2,Y

! 2X! !2X

!!100, 1000"!!50, 50"!!5, 30"!!10, 10"
!!4, 4"!!4, 4"!!2, 2"!!2, 2"

f $x# ! x 2 # 3

f
x

f $x#fx
bax$x, f $x##

f

!c, d"!a, b"

!a, b" % !c, d " ! %$x, y# & a & x & b, c & y & d '

Ymax ! dYmin ! c
yXmax ! bXmin ! a

SECTION 1.4 GRAPHING CALCULATORS AND COMPUTERS    45

(a) !_2, 2" by !_2, 2"

2

_2

_2 2
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46 CHAPTER 1 FUNCTIONS AND MODELS

Determine an appropriate viewing rectangle for the function
and use it to graph .

SOLUTION The expression for is defined when

Therefore the domain of is the interval . Also,

so the range of is the interval .
We choose the viewing rectangle so that the -interval is somewhat larger than the

domain and the -interval is larger than the range. Taking the viewing rectangle to be
by , we get the graph shown in Figure 3.

Graph the function .

SOLUTION Here the domain is , the set of all real numbers. That doesn’t help us choose
a viewing rectangle. Let’s experiment. If we start with the viewing rectangle by

, we get the graph in Figure 4. It appears blank, but actually the graph is so
nearly vertical that it blends in with the -axis.

If we change the viewing rect angle to by , we get the picture
shown in Figure 5(a). The graph appears to consist of vertical lines, but we know that
can’t be correct. If we look carefully while the graph is being drawn, we see that the
graph leaves the screen and reappears during the graphing process. This indicates that 
we need to see more in the vertical direction, so we change the viewing rectangle to

by . The resulting graph is shown in Figure 5(b). It still doesn’t
quite reveal all the main features of the function, so we try by
in Figure 5(c). Now we are more confident that we have arrived at an appropriate view-
ing rectangle. In Chapter 4 we will be able to see that the graph shown in Figure 5(c)
does indeed reveal all the main features of the function.

Graph the function in an appropriate viewing rectangle.

SOLUTION Figure 6(a) shows the graph of produced by a graphing calculator using the
viewing rectangle by . At first glance the graph appears to be 

EXAMPLE 4v

EXAMPLE 2

&? ! x ! ! 2 &? "2 ! x ! 2

8 " 2x 2 # 0 &? 2x 2 ! 8 &? x 2 ! 4

f "x#

ff "x# ! s8 " 2x 2

$"1.5, 1.5%$"12, 12%
f

f "x# ! sin 50x

EXAMPLE 3

FIGURE 5 Graphs of y=˛-150x
(a) (c)(b)

1000

_1000

_20 20

500

_500

_20 20

20

_20

_20 20

$"1000, 1000%$"20, 20%
$"500, 500%$"20, 20%

$"20, 20%$"20, 20%
y

$"5, 5%
$"5, 5%

!

y ! x 3 " 150x

$"1, 4%$"3, 3%
y

x
[0, 2s2 ]f

0 ! s8 " 2x 2 ! s8 ! 2s2 & 2.83

$"2, 2%f

FIGURE 3

4

_1

_3 3

8-2≈ƒ=œ„„„„„„

5

_5

_5 5

FIGURE 4
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reasonable. But if we change the viewing rectangle to the ones shown in the following
parts of Figure 6, the graphs look very different. Something strange is happening.

In order to explain the big differences in appearance of these graphs and to find an
appropriate viewing rectangle, we need to find the period of the function
We know that the function has period and the graph of is 
shrunk horizontally by a factor of 50, so the period of is

This suggests that we should deal only with small values of in order to show just a few
oscillations of the graph. If we choose the viewing rectangle by ,
we get the graph shown in Figure 7.

Now we see what went wrong in Figure 6. The oscillations of are so rapid
that when the calculator plots points and joins them, it misses most of the maximum and
minimum points and therefore gives a very misleading impression of the graph.

We have seen that the use of an inappropriate viewing rectangle can give a misleading
impression of the graph of a function. In Examples 1 and 3 we solved the problem by
changing to a larger viewing rectangle. In Example 4 we had to make the viewing rect -
angle smaller. In the next example we look at a function for which there is no single view-
ing rectangle that reveals the true shape of the graph.

Graph the function .

SOLUTION Figure 8 shows the graph of produced by a graphing calculator with viewing
rectangle by . It looks much like the graph of , but per-
haps with some bumps attached. If we zoom in to the viewing rectangle by !!0.1, 0.1"

!!6.5, 6.5" !!1.5, 1.5" y ! sin x
f

v EXAMPLE 5 f #x$ ! sin x " 1
100 cos 100x

y ! sin 50x

!!0.25, 0.25" !!1.5, 1.5"
x

2#

50
!

#

25
% 0.126

y ! sin 50x
y ! sin x 2# y ! sin 50x

y ! sin 50x.

FIGURE 6
Graphs of ƒ=sin 50x

in four viewing rectangles

(a) (b)

(c) (d)

1.5

_1.5

_10 10

1.5

_1.5

_12 12

1.5

_1.5

_9 9

1.5

_1.5

_6 6
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FIGURE 7
ƒ=sin 50x

1.5

_1.5

_.25 .25

The appearance of the graphs in Figure 6
depends on the machine used. The graphs you
get with your own graphing device might not
look like these figures, but they will also be
quite inaccurate.

FIGURE 8

1.5

_1.5

_6.5 6.5
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48 CHAPTER 1 FUNCTIONS AND MODELS

FIGURE 9

0.1

_0.1

_0.1 0.1

, we can see much more clearly the shape of these bumps in Figure 9. The
reason for this behavior is that the second term, , is very small in comparison
with the first term, . Thus we really need two graphs to see the true nature of this
function.

Draw the graph of the function .

SOLUTION Figure 10(a) shows the graph produced by a graphing calculator with view-
ing rectangle by . In connecting successive points on the graph, the 
calculator produced a steep line segment from the top to the bottom of the screen. That
line segment is not truly part of the graph. Notice that the domain of the function

is . We can eliminate the extraneous near-vertical line by exper-
imenting with a change of scale. When we change to the smaller viewing rectangle

by on this particular calculator, we obtain the much better graph
in Figure 10(b).

Graph the function .

SOLUTION Some graphing devices display the graph shown in Figure 11, whereas others
produce a graph like that in Figure 12. We know from Section 1.2 (Figure 13) that the
graph in Figure 12 is correct, so what happened in Figure 11? The explanation is that
some machines compute the cube root of using a logarithm, which is not defined if 
is negative, so only the right half of the graph is produced.

You should experiment with your own machine to see which of these two graphs is
produced. If you get the graph in Figure 11, you can obtain the correct picture by graph-
ing the function 

Notice that this function is equal to (except when ).s3 x x ! 0

f !x" !
x

# x # ! # x #1$3

FIGURE 11

2

_2

_3 3

FIGURE 12

2

_2

_3 3

x x

EXAMPLE 7 y ! s3 x

(a) (b)

9

_9

_9 9

4.7

_4.7

_4.7 4.7

FIGURE 10

%!4.7, 4.7& %!4.7, 4.7&

y ! 1$!1 ! x" 'x # x " 1(

%!9, 9& %!9, 9&

EXAMPLE 6 y !
1

1 ! x

sin x

1
100 cos 100x

%!0.1, 0.1&

Another way to avoid the extraneous line is to
change the graphing mode on the calculator so
that the dots are not connected.

You can get the correct graph with Maple if 
you first type

with(RealDomain);
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SECTION 1.4 GRAPHING CALCULATORS AND COMPUTERS    49

To understand how the expression for a function relates to its graph, it’s helpful to graph
a family of functions, that is, a collection of functions whose equations are related. In the
next example we graph members of a family of cubic polynomials.

Graph the function for various values of the number . How
does the graph change when is changed?

SOLUTION Figure 13 shows the graphs of for , , , , and . We
see that, for positive values of , the graph increases from left to right with no maximum
or minimum points (peaks or valleys). When , the curve is flat at the origin. When
is negative, the curve has a maximum point and a minimum point. As decreases, the
maximum point becomes higher and the minimum point lower.

Find the solution of the equation correct to two decimal places.

SOLUTION The solutions of the equation are the -coordinates of the points of
intersection of the curves and . From Figure 14(a) we see that there is
only one solution and it lies between 0 and 1. Zooming in to the viewing rectangle
by , we see from Figure 14(b) that the root lies between 0.7 and 0.8. So we zoom in
further to the viewing rectangle by in Figure 14(c). By moving the
cursor to the intersection point of the two curves, or by inspection and the fact that the 
-scale is 0.01, we see that the solution of the equation is about 0.74. (Many calculators

have a built-in intersection feature.)

FIGURE 13
Several members of the family of
functions y=˛+cx, all graphed
in the viewing rectangle !_2, 2"
by !_2.5, 2.5"

EXAMPLE 9

EXAMPLE 8v

!0.7, 0.8" by !0.7, 0.8"
x-scale=0.01

(c)!0, 1" by !0, 1"
x-scale=0.1

(b)!_5, 5" by !_1.5, 1.5"
x-scale=1

(a)

0.8

0.7
0.8

y=x

1

0
1

y=x

1.5

_1.5

_5 5

y=x
y=cos x

FIGURE 14
Locating the roots
of cos x=x

y=cos x

y=cos x

x

!0.7, 0.8"!0.7, 0.8"
!0, 1"

!0, 1"
y ! xy ! cos x

xcos x ! x

cos x ! x

(a) y=˛+2x (b) y=˛+x (c) y=˛ (d) y=˛-x (e) y=˛-2x

c
cc ! 0

c
!2!101c ! 2y ! x 3 " cx

c
cy ! x 3 " cx

In Visual 1.4 you can see an 
animation of Figure 13.
TEC
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50 CHAPTER 1 FUNCTIONS AND MODELS

1. Use a graphing calculator or computer to determine which of
the given viewing rectangles produces the most appropriate
graph of the function .
(a) by (b) by 
(c) by 

2. Use a graphing calculator or computer to determine which of
the given viewing rectangles produces the most appropriate
graph of the function .
(a) by (b) by 
(c) by (d) by 

3–14 Determine an appropriate viewing rectangle for the given 
function and use it to draw the graph.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. (a) Try to find an appropriate viewing rectangle for
.

(b) Do you need more than one window? Why?

16. Graph the function in an appropriate 
viewing rectangle. Why does part of the graph appear to be
missing?

17. Graph the ellipse by graphing the functions
whose graphs are the upper and lower halves of the ellipse.

18. Graph the hyperbola by graphing the functions
whose graphs are the upper and lower branches of the
hyperbola.

19–20 Do the graphs intersect in the given viewing rectangle? 
If they do, how many points of intersection are there?

19. , ;

20. , ;

21–23 Find all solutions of the equation correct to two decimal
places.

21. 22.

23. tan x ! s1 ! x 2

sx ! x 3 ! 1x 4 ! x ! 1

!!6, 2" by !!5, 20"y ! 3x " 18y ! 6 ! 4x ! x 2

!!1, 3" by !!2.5, 1.5"
y ! 0.23x ! 2.25y ! 3x 2 ! 6x " 1

y 2 ! 9x 2 ! 1

4x 2 " 2y 2 ! 1

f #x$ ! x 2s30 ! x

f #x$ ! #x ! 10$3 2!x

y ! x 2 " 0.02 sin 50xy ! 10 sin x " sin 100x

f #x$ ! sec#20#x$f #x$ ! sin sx
f #x$ ! cos#0.001x$f #x$ ! sin2#1000x$

f #x$ !
x

x 2 " 100
f #x$ ! x 3 ! 225x

f #x$ ! s15x ! x 2f #x$ ! s50 ! 0.2x

f #x$ ! x 3 " 15x 2 " 65xf #x$ ! x 2 ! 36x " 32

!!50, 50"!!5, 5"!!50, 50"!!50, 50"
!!10, 10"!!10, 10"!!3, 3"!!3, 3"

f #x$ ! x 4 ! 16x 2 " 20

!0, 10"!0, 10"
!0, 2"!0, 10"!!5, 5"!!5, 5"

f #x$ ! sx 3 ! 5x 2

24. We saw in Example 9 that the equation has exactly
one solution.
(a) Use a graph to show that the equation has

three solutions and find their values correct to two decimal
places.

(b) Find an approximate value of such that the equation
has exactly two solutions.

25. Use graphs to determine which of the functions
and is eventually larger (that is, larger when is
very large).

26. Use graphs to determine which of the functions
and is eventually larger.

27. For what values of is it true that and
?

28. Graph the polynomials and
on the same screen, first using the viewing rect angle by
[ ] and then changing to by .
What do you observe from these graphs?

29. In this exercise we consider the family of root functions
, where is a positive integer.

(a) Graph the functions , , and on the
same screen using the viewing rectangle by .

(b) Graph the functions , , and on 
the same screen using the viewing rectangle 
by . (See Example 7.)

(c) Graph the functions , , , and
on the same screen using the viewing rectangle
by .

(d) What conclusions can you make from these graphs?

30. In this exercise we consider the family of functions
, where is a positive integer.

(a) Graph the functions and on the same
screen using the viewing rectangle by .

(b) Graph the functions and on the same
screen using the same viewing rectangle as in part (a).

(c) Graph all of the functions in parts (a) and (b) on the same
screen using the viewing rectangle by .

(d) What conclusions can you make from these graphs?

31. Graph the function for several values 
of . How does the graph change when changes?

32. Graph the function for various values 
of . Describe how changing the value of affects the graph.c c

f #x$ ! s1 " cx 2

c c
f #x$ ! x 4 " cx 2 " x

!!1, 3" !!1, 3"

y ! 1%x 2 y ! 1%x 4
!!3, 3" !!3, 3"

y ! 1%x y ! 1%x 3
f #x$ ! 1%xn n

!!1, 3" !!1, 2"
y ! s5 x

y ! sx y ! s3 x y ! s4 x
!!2, 2"

!!3, 3"
y ! x y ! s3 x y ! s5 x

!!1, 4" !!1, 3"
y ! sx y ! s4 x y ! s6 x

f #x$ ! sn x n

!2, 2 !!10, 10" !!10,000, 10,000"
!!2, 2"

P#x$ ! 3x 5 ! 5x 3 " 2x Q#x$ ! 3x 5

!#%2 $ x $ #%2
x & tan x ! x & $ 0.01

f #x$ ! x 4 ! 100x 3 t#x$ ! x 3

t#x$ ! x 3%10 x
f #x$ ! 10x 2

cos x ! mx
m

cos x ! 0.3x

cos x ! x

1.4 ; Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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SECTION 1.5 EXPONENTIAL FUNCTIONS    51

33. Graph the function , , for , 
and 6. How does the graph change as increases?

34. The curves with equations

are called bullet-nose curves. Graph some of these curves to
see why. What happens as increases?

35. What happens to the graph of the equation as 
varies?

36. This exercise explores the effect of the inner function on a
composite function .
(a) Graph the function using the viewing rect -

angle by . How does this graph differ
from the graph of the sine function?

(b) Graph the function using the viewing rect angle
by . How does this graph differ from the

graph of the sine function?

37. The figure shows the graphs of and as
displayed by a TI-83 graphing calculator. The first graph is
inaccurate. Explain why the two graphs appear identical.

y ! sin 96x y ! sin 2x

!!5, 5" !!1.5, 1.5"
y ! sin#x 2 $

!0, 400" !!1.5, 1.5"
y ! sin(sx )

y ! f #t#x$$
t

c
y 2 ! cx 3 " x 2

c

y ! % x %
sc ! x 2

n
y ! x n2!x x # 0 n ! 1, 2, 3, 4, 5 [Hint: The TI-83’s graphing window is 95 pixels wide. What

specific points does the calculator plot?]

38. The first graph in the figure is that of as displayed
by a TI-83 graphing calculator. It is inaccurate and so, to help
explain its appearance, we replot the curve in dot mode in 
the second graph. What two sine curves does the calculator
appear to be plotting? Show that each point on the graph of

that the TI-83 chooses to plot is in fact on one of
these two curves. (The TI-83’s graphing window is 95 pixels
wide.)

0 2π 0 2π

y ! sin 45x

y ! sin 45x

y=sin 96x

0 2π

y=sin 2x

0 2π

The function is called an exponential function because the variable, x, is the 
exponent. It should not be confused with the power function , in which the vari-
able is the base.

In general, an exponential function is a function of the form

where is a positive constant. Let’s recall what this means.
If , a positive integer, then

n factors

If , and if , where is a positive integer, then

If is a rational number, , where and are integers and , then

But what is the meaning of if x is an irrational number? For instance, what is meant by
or ?

To help us answer this question we first look at the graph of the function , where
x is rational. A representation of this graph is shown in Figure 1. We want to enlarge the 
domain of to include both rational and irrational numbers.y ! 2x

y ! 2x
5$2s3

ax

ax ! ap&q ! qsap ! ( qsa ) p

q % 0qpx ! p&qx

a !n !
1
an

nx ! !nx ! 0, then a 0 ! 1

an ! a ! a ! & & & ! a

x ! n
a

f #x$ ! ax

t#x$ ! x 2
f #x$ ! 2x

1.5 Exponential Functions

In Appendix G we present an alternative
approach to the exponential and logarithmic
functions using integral calculus.

FIGURE 1 
Representation of y=2®, x rational

x0

y

1

1
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52 CHAPTER 1 FUNCTIONS AND MODELS

There are holes in the graph in Figure 1 corresponding to irrational values of x. We want
to fill in the holes by defining , where , so that is an increasing function.
In particular, since the irrational number satisfies

we must have

and we know what and mean because 1.7 and 1.8 are rational numbers. Similarly,
if we use better approximations for , we obtain better approximations for :

. . . .

. . . .

. . . .

It can be shown that there is exactly one number that is greater than all of the numbers

. . .

and less than all of the numbers

. . .

We define to be this number. Using the preceding approximation process we can com-
pute it correct to six decimal places:

Similarly, we can define (or , if ) where x is any irrational number. Figure 2
shows how all the holes in Figure 1 have been filled to complete the graph of the function

.
The graphs of members of the family of functions are shown in Figure 3 for var-

ious values of the base a. Notice that all of these graphs pass through the same point
because for . Notice also that as the base a gets larger, the exponential func-
tion grows more rapidly (for ).

FIGURE 3 
0

1®

1.5®2®4®10®”   ’®1
4”   ’®1

2

x

y

1

x ! 0
a 0 ! 1 a " 0

!0, 1"
y ! ax

f !x" ! 2x, x ! !

2x a x a ! 0

2s3 # 3.321997

2s3

21.8, 21.74, 21.733, 21.7321, 21.73206,

21.7, 21.73, 21.732, 21.7320, 21.73205,

1.73205 " s3 " 1.73206 ? 21.73205 " 2s3 " 21.73206

1.7320 " s3 " 1.7321 ? 21.7320 " 2s3 " 21.7321

1.732 " s3 " 1.733 ? 21.732 " 2s3 " 21.733

1.73 " s3 " 1.74 ? 21.73 " 2s3 " 21.74

s3 2s3
21.7 21.8

21.7 " 2s3 " 21.8

1.7 " s3 " 1.8

s3
f !x" ! 2x x ! ! f

x10

y

1

FIGURE 2
y=2®, x real

A proof of this fact is given in J. Marsden 
and A. Weinstein, Calculus Unlimited (Menlo
Park, CA, 1981). For an online version, see

caltechbook.library.caltech.edu/197/

If , then approaches as 
becomes large. If , then approaches 
as decreases through negative values. In both
cases the -axis is a horizontal asymptote.
These matters are discussed in Sec tion 2.6.

x
x

0a xa ! 1
x0a x0 " a " 1
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SECTION 1.5 EXPONENTIAL FUNCTIONS    53

You can see from Figure 3 that there are basically three kinds of exponential functions
. If , the exponential function decreases; if , it is a constant; and if

, it increases. These three cases are illustrated in Figure 4. Observe that if , then
the exponential function has domain ! and range . Notice also that, since

, the graph of is just the reflection of the graph of
about the -axis.

One reason for the importance of the exponential function lies in the following proper-
ties. If x and y are rational numbers, then these laws are well known from elementary 
algebra. It can be proved that they remain true for arbitrary real numbers x and y. 

Laws of Exponents If a and b are positive numbers and x and y are any real num-
bers, then

1. 2. 3. 4.

Sketch the graph of the function and determine its domain and
range.

SOLUTION First we reflect the graph of [shown in Figures 2 and 5(a)] about the 
x-axis to get the graph of in Figure 5(b). Then we shift the graph of
upward 3 units to obtain the graph of in Figure 5(c). The domain is and the
range is .

Use a graphing device to compare the exponential function
and the power function . Which function grows more quickly when x is large?t!x" ! x 2
v EXAMPLE 2 f !x" ! 2x

FIGURE 5 

0

1

(a) y=2®

x

y

0

_1

(b) y=_2®

x

y

y=3

0

2

(c) y=3-2®

x

y

!!", 3"
y ! 3 ! 2x !

y ! !2x y ! !2x
y ! 2x

EXAMPLE 1 y ! 3 ! 2x

a x# y ! axay ax!y !
ax

ay
!ax"y ! axy !ab"x ! axbx

FIGURE 4 (a) y=a®,  0<a<1 (b) y=1® (c) y=a®,  a>1

1
(0, 1)

(0, 1)

x0

y y

x0x0

y

y
!1#a"x ! 1#ax ! a!x y ! !1#a"x y ! ax

y ! ax !0, ""
a $ 1 a " 1
y ! ax 0 % a % 1 a ! 1

www.stewartcalculus.com

For review and practice using the Laws of 
Exponents, click on Review of Algebra.

For a review of reflecting and shifting graphs,
see Section 1.3.
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54 CHAPTER 1 FUNCTIONS AND MODELS

SOLUTION Figure 6 shows both functions graphed in the viewing rectangle 
by . We see that the graphs intersect three times, but for the graph of

stays above the graph of . Figure 7 gives a more global view and
shows that for large values of x, the exponential function grows far more rapidly
than the power function .

Applications of Exponential Functions
The exponential function occurs very frequently in mathematical models of nature and 
society. Here we indicate briefly how it arises in the description of population growth. 
In later chapters we will pursue these and other applications in greater detail.

First we consider a population of bacteria in a homogeneous nutrient medium. Suppose
that by sampling the population at certain intervals it is determined that the population 
doubles every hour. If the number of bacteria at time t is , where t is measured in hours,
and the initial population is , then we have

It seems from this pattern that, in general,

This population function is a constant multiple of the exponential function , so it 
exhibits the rapid growth that we observed in Figures 2 and 7. Under ideal conditions 
(unlimited space and nutrition and absence of disease) this exponential growth is typical of
what actually occurs in nature.

What about the human population? Table 1 shows data for the population of the world
in the 20th century and Figure 8 shows the corresponding scatter plot.

FIGURE 8 Scatter plot for world population growth

5x10'

P

t20 40 60 80 100 1200

y ! 2t

p!t" ! 2 t ! 1000 ! !1000"2t

p!3" ! 2p!2" ! 23 ! 1000

p!2" ! 2p!1" ! 22 ! 1000

p!1" ! 2p!0" ! 2 ! 1000

p!0" ! 1000
p!t"

40

0_2 6

y=2® y=≈

FIGURE 6

250

0 8

y=2®

y=≈

FIGURE 7

y ! x 2
y ! 2x

f !x" ! 2x t!x" ! x 2
#0, 40$ x " 4

##2, 6$

Example 2 shows that increases more
quickly than . To demonstrate just how
quickly increases, let’s perform the
following thought experiment. Suppose we start
with a piece of paper a thousandth of an inch
thick and we fold it in half 50 times. Each time
we fold the paper in half, the thickness of the
paper doubles, so the thickness of the resulting
paper would be inches. How thick do 
you think that is? It works out to be more than
17 million miles!

250%1000

f !x" ! 2x
y ! x 2

y ! 2x

TABLE 1

Population
(millions)

0 1650
10 1750
20 1860
30 2070
40 2300
50 2560
60 3040
70 3710
80 4450
90 5280

100 6080
110 6870

t
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SECTION 1.5 EXPONENTIAL FUNCTIONS    55

The pattern of the data points in Figure 8 suggests exponential growth, so we use a graph-
ing calculator with exponential regression capability to apply the method of least squares
and obtain the exponential model

where corresponds to 1900. Figure 9 shows the graph of this exponential function 
together with the original data points. We see that the exponential curve fits the data rea-
sonably well. The period of relatively slow population growth is explained by the two world
wars and the Great Depression of the 1930s.

The Number e
Of all possible bases for an exponential function, there is one that is most convenient for the
purposes of calculus. The choice of a base a is influenced by the way the graph of
crosses the y-axis. Figures 10 and 11 show the tangent lines to the graphs of and

at the point . (Tangent lines will be defined precisely in Section 2.7. For pres-
ent purposes, you can think of the tangent line to an exponential graph at a point as the line
that touches the graph only at that point.) If we measure the slopes of these tangent lines at

, we find that for and for .

It turns out, as we will see in Chapter 3, that some of the formulas of calculus will be
greatly simplified if we choose the base a so that the slope of the tangent line to at

is exactly 1. (See Figure 12.) In fact, there is such a number and it is denoted by the
letter e. (This notation was chosen by the Swiss mathematician Leonhard Euler in 1727,
probably because it is the first letter of the word exponential.) In view of Figures 10 and
11, it comes as no surprise that the number e lies between 2 and 3 and the graph of
lies between the graphs of and . (See Figure 13.) In Chapter 3 we will see
that the value of e, correct to five decimal places, is

e ! 2.71828

y ! 2x y ! 3x
y ! ex

"0, 1#
y ! ax

FIGURE 11

0

1

mÅ1.1

FIGURE 10

0

y=2®

1
mÅ0.7

x

y y=3®

x

y

"0, 1# m ! 0.7 y ! 2x m ! 1.1 y ! 3x

y ! 3x "0, 1#
y ! 2x

y ! ax

FIGURE 9 
Exponential model for

population growth

5x10'

20 40 60 80 100 120

P

t0

t ! 0
P ! "1436.53#! "1.01395#t

FIGURE 12
The natural exponential function
crosses the y-axis with a slope of 1.

0

y=´

1

m=1

x

y
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56 CHAPTER 1 FUNCTIONS AND MODELS

Module 1.5 enables you to graph 
exponential functions with various bases and
their tangent lines in order to estimate more
closely the value of for which the tangent has
slope .1

a

TEC

We call the function the natural exponential function.

Graph the function and state the domain and range.

SOLUTION We start with the graph of from Figures 12 and 14(a) and reflect about
the y-axis to get the graph of in Figure 14(b). (Notice that the graph crosses the
y-axis with a slope of !1). Then we compress the graph vertically by a factor of 2 to 
obtain the graph of in Figure 14(c). Finally, we shift the graph downward one
unit to get the desired graph in Figure 14(d). The domain is and the range is .

How far to the right do you think we would have to go for the height of the graph of
to exceed a million? The next example demonstrates the rapid growth of this func-

tion by providing an answer that might surprise you.

Use a graphing device to find the values of x for which .

SOLUTION In Figure 15 we graph both the function and the horizontal line
. We see that these curves intersect when . Thus when

. It is perhaps surprising that the values of the exponential function have already
surpassed a million when x is only 14.

f !x" ! ex

EXAMPLE 4

EXAMPLE 3v

FIGURE 15

1.5x10^

0 15

y=´

y=10^

x " 13.8
ex " 106x # 13.8y ! 1,000,000

y ! ex
ex " 1,000,000

y ! ex

FIGURE 14

1
2(d) y=   e–®-1

y=_1
0

1

1
2(c) y=   e–®

0

1

0

(b) y=e–®

1

x0

y

(a) y=´

1

y

x

y

x

y

x

!!1, #"!
y ! 1

2e!x

y ! e!x
y ! ex
y ! 1

2e!x ! 1

FIGURE 13
0

1

y=2®

y=e®

y=3®y

x
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SECTION 1.5 EXPONENTIAL FUNCTIONS    57

1–4 Use the Law of Exponents to rewrite and simplify the 
expression.

1. (a) (b)

2. (a) (b)

3. (a) (b)

4. (a) (b)

5. (a) Write an equation that defines the exponential function
with base .

(b) What is the domain of this function?
(c) If , what is the range of this function?
(d) Sketch the general shape of the graph of the exponential

function for each of the following cases.
( i ) ( ii ) ( iii ) 

6. (a) How is the number defined?
(b) What is an approximate value for ?
(c) What is the natural exponential function?

; 7–10 Graph the given functions on a common screen. How are
these graphs related?

7. ,  ,  ,  

8. ,  ,  ,  

9. ,  ,  ,  

10. ,  ,  ,  

11–16 Make a rough sketch of the graph of the function. Do not
use a calculator. Just use the graphs given in Figures 3 and 13
and, if necessary, the transformations of Section 1.3.

11. 12.

13. 14.

15. 16.

17. Starting with the graph of , write the equation of the
graph that results from
(a) shifting 2 units downward
(b) shifting 2 units to the right
(c) reflecting about the x-axis
(d) reflecting about the y-axis
(e) reflecting about the x-axis and then about the y-axis

y ! e x

y ! 1 ! 1
2 e!x y ! 2!1 ! e x "

y ! !2!x y ! e # x #

y ! 10 x"2 y ! !0.5"x ! 2

y ! 0.9 x y ! 0.6x y ! 0.3x y ! 0.1x
y ! ( 1

10)xy ! ( 1
3 )xy ! 10 xy ! 3x

y ! 8!xy ! 8xy ! e!xy ! e x
y ! 20 xy ! 5xy ! e xy ! 2x

e
e

0 # a # 1a ! 1a $ 1

a " 1

a $ 0

sasb
s3 ab

x 2n ! x 3n!1

xn"2

!6y3"4

2y 5b8!2b"4

x!3x 2"38 4$3

1
s3 x 4

4!3

2!8

18. Starting with the graph of , find the equation of the
graph that results from
(a) reflecting about the line 
(b) reflecting about the line 

19–20 Find the domain of each function.

19. (a) (b)

20. (a) (b)

21–22 Find the exponential function whose graph 
is given.

21. 22.

23. If , show that

24. Suppose you are offered a job that lasts one month. Which of
the following methods of payment do you prefer?
I. One million dollars at the end of the month.

II. One cent on the first day of the month, two cents on the
second day, four cents on the third day, and, in general,

cents on the th day.

25. Suppose the graphs of and are drawn on
a coordinate grid where the unit of measurement is 1 inch.
Show that, at a distance 2 ft to the right of the origin, the
height of the graph of is 48 ft but the height of the graph of

is about 265 mi.

; 26. Compare the functions and by graphing
both functions in several viewing rectangles. Find all points
of intersection of the graphs correct to one decimal place.
Which function grows more rapidly when is large?

; 27. Compare the functions and by graphing
both and in several viewing rectangles. When does the
graph of finally surpass the graph of ?

y ! e x

t f
f t

f !x" ! x 10 t!x" ! e x
x

t!x" ! 5xf !x" ! x 5

t
f

t!x" ! 2xf !x" ! x 2

n2n!1

f (x " h) ! f (x)
h

! 5x%5h ! 1
h &

f !x" ! 5x

(_1, 3)

”1,    ’4
3

0

y

x0

(1, 6)

(3, 24)
y

x

f !x" ! Cax

t!t" ! s1 ! 2 tt!t" ! sin!e!t "

f !x" !
1 " x
e cos xf !x" !

1 ! e x 2

1 ! e1!x 2

x ! 2
y ! 4

1.5 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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58 CHAPTER 1 FUNCTIONS AND MODELS

; 28. Use a graph to estimate the values of such that
.

29. Under ideal conditions a certain bacteria population is known
to double every three hours. Suppose that there are initially
100 bacteria.
(a) What is the size of the population after 15 hours?
(b) What is the size of the population after hours?
(c) Estimate the size of the population after 20 hours.

; (d) Graph the population function and estimate the time for
the population to reach 50,000.

30. A bacterial culture starts with 500 bacteria and doubles in
size every half hour.
(a) How many bacteria are there after 3 hours?
(b) How many bacteria are there after hours?
(c) How many bacteria are there after 40 minutes?

; (d) Graph the population function and estimate the time for
the population to reach 100,000.

; 31. Use a graphing calculator with exponential regression capa-
 bility to model the population of the world with the data from
1950 to 2010 in Table 1 on page 54. Use the model to esti -
mate the population in 1993 and to predict the population in
the year 2020.

e x ! 1,000,000,000
x

t

t

; 32. The table gives the population of the United States, in mil-
lions, for the years 1900–2010. Use a graphing calculator
with exponential regression capability to model the US popu-
lation since 1900. Use the model to estimate the population
in 1925 and to predict the population in the year 2020.

; 33. If you graph the function

you’ll see that appears to be an odd function. Prove it.

; 34. Graph several members of the family of functions

where . How does the graph change when changes?
How does it change when changes?a

a ! 0 b

f !x" !
1

1 " aebx

f

f !x" !
1 # e 1#x

1 " e 1#x

Year Population Year Population

1900 76 1960 179
1910 92 1970 203
1920 106 1980 227
1930 123 1990 250
1940 131 2000 281
1950 150 2010 310

Table 1 gives data from an experiment in which a bacteria culture started with 100 bacteria
in a limited nutrient medium; the size of the bacteria population was recorded at hourly 
intervals. The number of bacteria N is a function of the time t : .

Suppose, however, that the biologist changes her point of view and becomes interested
in the time required for the population to reach various levels. In other words, she is think-
ing of t as a function of N. This function is called the inverse function of f, denoted by , 
and read “ f inverse.” Thus is the time required for the population level to reach
N. The values of can be found by reading Table 1 from right to left or by consulting
Table 2. For instance, because f !6" ! 550.f #1!550" ! 6

f #1
t ! f #1!N "

f #1

N ! f !t"

1.6 Inverse Functions and Logarithms

TABLE 2 t as a function of N

N ! time to reach N bacteria

100 0
168 1
259 2
358 3
445 4
509 5
550 6
573 7
586 8

t ! f #1!N"

TABLE 1 N as a function of t

t
(hours) ! population at time t

0 100
1 168
2 259
3 358
4 445
5 509
6 550
7 573
8 586

N ! f !t"
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SECTION 1.6 INVERSE FUNCTIONS AND LOGARITHMS    59

Not all functions possess inverses. Let’s compare the functions and whose arrow 
diagrams are shown in Figure 1. Note that never takes on the same value twice (any two
inputs in have different outputs), whereas does take on the same value twice (both 2 
and 3 have the same output, 4). In symbols,

but

Functions that share this property with are called one-to-one functions.

Definition A function is called a one-to-one function if it never takes on the
same value twice; that is,

If a horizontal line intersects the graph of in more than one point, then we see from
Figure 2 that there are numbers and such that . This means that is not
one-to-one. Therefore we have the following geometric method for determining whether a
function is one-to-one.

Horizontal Line Test A function is one-to-one if and only if no horizontal line inter-
sects its graph more than once.

Is the function one-to-one?

SOLUTION 1 If , then (two different numbers can’t have the same cube).
Therefore, by Definition 1, is one-to-one.

SOLUTION 2 From Figure 3 we see that no horizontal line intersects the graph of
more than once. Therefore, by the Horizontal Line Test, is one-to-one.

Is the function one-to-one?

SOLUTION 1 This function is not one-to-one because, for instance,

and so 1 and have the same output.

EXAMPLE 2v

EXAMPLE 1v

!1

t!1" ! 1 ! t!!1"

t!x" ! x 2

ff !x" ! x 3

f !x" ! x 3
x 3

1 " x 3
2x1 " x 2

f !x" ! x 3

FIGURE 1 

4
3
2
1

10

4

2

A B
g

4
3
2
1

10
7
4
2

A B
f

f is one-to-one; g is not

ff !x1 " ! f !x2 "x2x1

f

whenever x1 " x2f !x1 " " f !x2 "

f1

f

whenever x1 " x 2f !x1 " " f !x 2 "

t!2" ! t!3"

tA
f

tf

In the language of inputs and outputs, this defi-
nition says that is one-to-one if each output
corresponds to only one input.

f

0

‡fl
y=ƒ

FIGURE 2
This function is not one-to-one
because f(⁄)=f(¤).

y

x⁄ ¤

FIGURE 3 
ƒ=˛ is one-to-one.

0

y=˛

y

x
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60 CHAPTER 1 FUNCTIONS AND MODELS

SOLUTION 2 From Figure 4 we see that there are horizontal lines that intersect the graph of
more than once. Therefore, by the Horizontal Line Test, is not one-to-one.

One-to-one functions are important because they are precisely the functions that pos-
sess inverse functions according to the following definition.

Definition Let be a one-to-one function with domain and range . Then
its inverse function has domain and range and is defined by

for any in .

This definition says that if maps into , then maps back into . (If were not
one-to-one, then would not be uniquely defined.) The arrow diagram in Figure 5 indi-
cates that reverses the effect of . Note that

For example, the inverse function of is because if , then

| CAUTION Do not mistake the in for an exponent. Thus

The reciprocal could, however, be written as .

If , , and , find and
.

SOLUTION From the definition of we have

The diagram in Figure 6 makes it clear how reverses the effect of in this case.

EXAMPLE 3v

ff !1

f !8" ! !10becausef !1!!10" ! 8

f !1" ! 5becausef !1!5" ! 1

f !3" ! 7becausef !1!7" ! 3

f !1

f !1!!10"
f !1!5",f !1!7",f !8" ! !10f !3" ! 7f !1" ! 5

# f !x"$!11%f !x"

1
f !x"

does not meanf !1!x"

f !1!1

f !1!y" ! f !1!x 3 " ! !x 3 "1%3 ! x

y ! x 3f !1!x" ! x 1%3f !x" ! x 3

range of f !1 ! domain of f

domain of f !1 ! range of f

ff !1
f !1

fxyf !1yxf

By

f !x" ! y&?f !1!y" ! x

ABf !1
BAf2

tt

FIGURE 4 
©=≈ is not one-to-one.

0

y=≈

x

y

x

y

A

B
f – !f

FIGURE 5 
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SECTION 1.6 INVERSE FUNCTIONS AND LOGARITHMS    61

The letter is traditionally used as the independent variable, so when we concentrate
on rather than on , we usually reverse the roles of and in Definition 2 and write

By substituting for in Definition 2 and substituting for in , we get the following can-
cellation equations:

The first cancellation equation says that if we start with , apply , and then apply we 
arrive back at , where we started (see the machine diagram in Figure 7). Thus undoes
what does. The second equation says that undoes what does.

For example, if , then and so the cancellation equations become

These equations simply say that the cube function and the cube root function cancel each
other when applied in succession.

Now let’s see how to compute inverse functions. If we have a function and are
able to solve this equation for in terms of , then according to Definition 2 we must have

. If we want to call the independent variable x, we then interchange and and
arrive at the equation .

How to Find the Inverse Function of a One-to-One Function f

Step 1 Write .
Step 2 Solve this equation for in terms of ( if possible).
Step 3 To express as a function of x, interchange and . 

The resulting equation is .

3

4

3

y ! f !1!x"
yxf !1

yx
y ! f !x"

5

y ! f !1!x"
yxx ! f !1!y"

yx
y ! f !x"

f ( f !1!x") ! !x 1#3"3 ! x

f !1( f !x") ! !x 3 "1#3 ! x

f !1!x" ! x 1#3f !x" ! x 3

FIGURE 7 
x xf ƒ f –!

f !1ff
f !1x

f !1,fx

f ( f !1!x") ! x for every x in B

f !1( f !x") ! x for every x in A

xy

f !y" ! x&?f !1!x" ! y

yxff !1
x

FIGURE 6 
The inverse function reverses

inputs and outputs.

B

5
7
_10

f

A

1
3
8

A

1
3
8

f –!

B

5
7
_10
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62 CHAPTER 1 FUNCTIONS AND MODELS

Find the inverse function of .

SOLUTION According to we first write

Then we solve this equation for :

Finally, we interchange and :

Therefore the inverse function is .

The principle of interchanging and to find the inverse function also gives us the
method for obtaining the graph of from the graph of . Since if and only 
if , the point is on the graph of if and only if the point is on the
graph of . But we get the point from by reflecting about the line . (See
Figure 8.)

Therefore, as illustrated by Figure 9:

The graph of is obtained by reflecting the graph of about the line .

Sketch the graphs of and its inverse function using the
same coordinate axes.

SOLUTION First we sketch the curve (the top half of the parabola
, or ) and then we reflect about the line to get the 

graph of . (See Figure 10.) As a check on our graph, notice that the expression for
is . So the graph of is the right half of the parabola

and this seems reasonable from Figure 10.

Logarithmic Functions
If and , the exponential function is either increasing or decreasing
and so it is one-to-one by the Horizontal Line Test. It therefore has an inverse function ,
which is called the logarithmic function with base a and is denoted by . If we use the loga

5

f !1
f !x" ! axa " 1a " 0

EXAMPLE 5

f !1 f y ! x

EXAMPLE 4v f !x" ! x 3 # 2

y ! !x 2 ! 1
f !1f !1!x" ! !x 2 ! 1, x $ 0

f !1f !1
y ! xx ! !y 2 ! 1y 2 ! !1 ! x

y ! s!1 ! x

f !x" ! s!1 ! x

FIGURE 8 FIGURE 9

0

y

x

(b, a)

(a, b)

y=x

0

y

x

f –!

y=x f

y ! x!a, b"!b, a"f !1
!b, a"f!a, b"f !1!b" ! a

f !a" ! bff !1
yx

f !1!x" ! s3 x ! 2

y ! s3 x ! 2

yx

x ! s3 y ! 2

x 3 ! y ! 2

x

y ! x 3 # 2

In Example 4, notice how reverses the
effect of . The function is the rule “Cube,
then add 2”; is the rule “Subtract 2, then
take the cube root.”

f !1
ff
f !1

0

y=x
y=ƒ

(0, _1)

y=f –!(x)

(_1, 0)

FIGURE 10

y

x
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SECTION 1.6 INVERSE FUNCTIONS AND LOGARITHMS    63

formulation of an inverse function given by ,

then we have 

Thus, if , then is the exponent to which the base must be raised to give . For
example, because .

The cancellation equations , when applied to the functions and
, become

The logarithmic function has domain and range . Its graph is the reflection
of the graph of about the line .

Figure 11 shows the case where . (The most important logarithmic functions have
base .) The fact that is a very rapidly increasing function for is 
reflected in the fact that is a very slowly increasing function for .

Figure 12 shows the graphs of with various values of the base . Since
, the graphs of all logarithmic functions pass through the point .

The following properties of logarithmic functions follow from the corresponding prop-
erties of exponential functions given in Section 1.5.

Laws of Logarithms If x and y are positive numbers, then
1.

2.

3. (where r is any real number)loga!xr " ! r loga x

loga# xy$ ! loga x ! loga y

loga!xy" ! loga x " loga y

FIGURE 12

0

y

1

x1

y=log£ x
y=log™ x

y=log∞ x
y=log¡¸ x

loga1 ! 0 !1, 0"
y ! loga x a # 1

y ! loga x x # 1
a # 1 y ! ax x # 0

a # 1
y ! ax y ! x

loga !0, $" !

aloga x ! x for every x # 0

7 loga!ax " ! x for every x ! !

f !1!x" ! loga x
4 f !x" ! ax

log10 0.001 ! !3 10!3 ! 0.001
x # 0 loga x a x

6 loga x ! y &? ay ! x

f !1!x" ! y &? f !y" ! x

3

0

y=x

y=a®,  a>1

y=loga x,  a>1

FIGURE 11

y

x
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Use the laws of logarithms to evaluate .

SOLUTION Using Law 2, we have

because .

Natural Logarithms
Of all possible bases for logarithms, we will see in Chapter 3 that the most convenient
choice of a base is the number , which was defined in Section 1.5. The logarithm with base

is called the natural logarithm and has a special notation:

If we put and replace with “ln” in and , then the defining properties of
the natural logarithm function become

In particular, if we set , we get

Find if .

SOLUTION 1 From we see that

Therefore .
(If you have trouble working with the “ln” notation, just replace it by . Then the

equation becomes ; so, by the definition of logarithm, .)

SOLUTION 2 Start with the equation

and apply the exponential function to both sides of the equation:

But the second cancellation equation in says that . Therefore .9

8

76

e ln x ! x x ! e 5

e ln x ! e 5

ln x ! 5

loge x ! 5 e 5 ! x
loge

x ! e 5

ln x ! 5 means e 5 ! x

EXAMPLE 7 x ln x ! 5

ln e ! 1

x ! 1

e ln x ! x x ! 0

9 ln!ex" ! x x ! !

8 ln x ! y &? ey ! x

a ! e loge

loge x ! ln x

e
e

a

24 ! 16

log2 80 " log2 5 ! log2#80
5 $ ! log2 16 ! 4

EXAMPLE 6 log2 80 " log2 5

64 CHAPTER 1 FUNCTIONS AND MODELS

Notation for Logarithms
Most textbooks in calculus and the sciences, as
well as calculators, use the notation for the
natural logarithm and for the “common
logarithm,” . In the more advanced mathe-
matical and scientific literature and in computer
languages, however, the notation usually
denotes the natural logarithm.

log x

log10 x
log x

ln x
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SECTION 1.6 INVERSE FUNCTIONS AND LOGARITHMS    65

Solve the equation .

SOLUTION We take natural logarithms of both sides of the equation and use :

Since the natural logarithm is found on scientific calculators, we can approximate the
solution: to four decimal places, .

Express as a single logarithm.

SOLUTION Using Laws 3 and 1 of logarithms, we have

The following formula shows that logarithms with any base can be expressed in terms
of the natural logarithm.

Change of Base Formula For any positive number , we have

PROOF Let . Then, from , we have . Taking natural logarithms of both
sides of this equation, we get . Therefore

Scientific calculators have a key for natural logarithms, so Formula 10 enables us to use
a calculator to compute a logarithm with any base (as shown in the following example).
Simi larly, Formula 10 allows us to graph any logarithmic function on a graphing calcula-
tor or computer (see Exercises 43 and 44).

Evaluate correct to six decimal places.

SOLUTION Formula 10 gives

6

9

log8 5 !
ln 5
ln 8

! 0.773976

EXAMPLE 10 log8 5

y !
ln x
ln a

y ln a ! ln x
y ! loga x ay ! x

loga x !
ln x
ln a

10 a "a " 1#

! ln(asb )

! ln a ! ln sb

ln a ! 1
2 ln b ! ln a ! ln b 1$2

v EXAMPLE 9 ln a ! 1
2 ln b

x ! 0.8991

x ! 1
3 "5 " ln 10#

3x ! 5 " ln 10

5 " 3x ! ln 10

ln"e 5"3x#! ln 10

EXAMPLE 8 e 5"3x ! 10
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66 CHAPTER 1 FUNCTIONS AND MODELS

Graph and Growth of the Natural Logarithm
The graphs of the exponential function and its inverse function, the natural loga-
rithm function, are shown in Figure 13. Because the curve crosses the y-axis with 
a slope of 1, it follows that the reflected curve crosses the x-axis with a slope of 1.

In common with all other logarithmic functions with base greater than 1, the natural log-
arithm is an increasing function defined on and the y-axis is a vertical asymptote.
(This means that the values of become very large negative as approaches 0.)

Sketch the graph of the function .

SOLUTION We start with the graph of as given in Figure 13. Using the transfor-
mations of Section 1.3, we shift it 2 units to the right to get the graph of
and then we shift it 1 unit downward to get the graph of . (See  Fig -
ure 14.)

Although is an increasing function, it grows very slowly when . In fact,
grows more slowly than any positive power of . To illustrate this fact, we compare 
approximate values of the functions and in the following table
and we graph them in Figures 15 and 16. You can see that initially the graphs of
and grow at comparable rates, but eventually the root function far surpasses the
logarithm.

x0

y

1000

20

y=œ„x

y=ln x

x0

y

1

1

y=œ„x

y=ln x

FIGURE 16FIGURE 15

y ! ln x
y ! sx

y ! ln x y ! x 1!2 ! sx
x

ln x x ! 1 ln x

FIGURE 14

0

y

2 x(3, 0)

x=2

y=ln(x-2)

0

y

x

y=ln x

(1, 0) 0

y

2 x

x=2

(3, _1)

y=ln(x-2)-1

y ! ln"x " 2# " 1
y ! ln"x " 2#

y ! ln x

EXAMPLE 11 y ! ln"x " 2# " 1

ln x x
"0, ##

y ! ln x
y ! ex

y ! ex

y

1
0

x1

y=x
y=´

y=ln x

FIGURE 13
The graph of y=ln x is the reflection  
of the graph of y=´ about the 
line y=x

x 1 2 5 10 50 100 500 1000 10,000 100,000

0 0.69 1.61 2.30 3.91 4.6 6.2 6.9 9.2 11.5

1 1.41 2.24 3.16 7.07 10.0 22.4 31.6 100 316

0 0.49 0.72 0.73 0.55 0.46 0.28 0.22 0.09 0.04
ln x
sx

sx

ln x
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SECTION 1.6 INVERSE FUNCTIONS AND LOGARITHMS    67

Inverse Trigonometric Functions
When we try to find the inverse trigonometric functions, we have a slight difficulty: 
Because the trigonometric functions are not one-to-one, they don’t have inverse functions.
The difficulty is overcome by restricting the domains of these functions so that they 
become one-to-one.

You can see from Figure 17 that the sine function is not one-to-one (use the
Horizontal Line Test). But the function , is one-to-one (see
Figure 18). The inverse function of this restricted sine function exists and is denoted by

or . It is called the inverse sine function or the arcsine function.

Since the definition of an inverse function says that

we have

| Thus, if , is the number between and whose sine is .

Evaluate (a) and (b) .

SOLUTION
(a) We have

because and lies between and .
(b) Let , so . Then we can draw a right triangle with angle as 
in Figure 19 and deduce from the Pythagorean Theorem that the third side has length

. This enables us to read from the triangle that

The cancellation equations for inverse functions become, in this case,

sin!sin!1x" ! x for !1 " x " 1

sin!1!sin x" ! x for !
#

2
" x "

#

2

tan(arcsin 1
3 ) ! tan $ !

1
2s2

s9 ! 1 ! 2s2

$ ! arcsin 1
3 sin $ ! 1

3 $

sin!##6" ! 1
2 ##6 !##2 ##2

sin!1(1
2) !

#

6

EXAMPLE 12 sin!1(1
2) tan(arcsin 1

3 )

sin!1x "
1

sin x
!1 " x " 1 sin!1x !##2 ##2 x

sin!1x ! y &? sin y ! x and !
#

2
" y "

#

2

f !1!x" ! y &? f !y" ! x

y

0_π π xπ
2

y=sin x

FIGURE 17

0

y

x

_ π
2

π
2

FIGURE 18 y=sin x, _   ¯x¯π
2

π
2

sin!1 arcsin
f

f !x" ! sin x, !##2 " x " ##2
y ! sin x

2 œ„2

3

¨
1

FIGURE 19
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The inverse sine function, , has domain and range , and its
graph, shown in Figure 20, is obtained from that of the restricted sine function (Figure 18)
by reflection about the line .

The inverse cosine function is handled similarly. The restricted cosine function
, , is one-to-one (see Figure 21) and so it has an inverse function 

denoted by or .

The cancellation equations are

The inverse cosine function, , has domain and range . Its graph is
shown in Figure 22.

The tangent function can be made one-to-one by restricting it to the interval
. Thus the inverse tangent function is defined as the inverse of the function

. (See Figure 23.) It is denoted by or .

Simplify the expression .

SOLUTION 1 Let . Then and . We want to find
but, since is known, it is easier to find first:

Thus cos!tan!1x" ! cos y !
1

sec y
!

1
s1 " x 2

sec y ! s1 " x 2 !since sec y # 0 for !$#2 % y % $#2"

sec2y ! 1 " tan2y ! 1 " x 2

cos y tan y sec y
y ! tan!1x tan y ! x !$#2 % y % $#2

EXAMPLE 13 cos!tan!1x"

tan!1x ! y &? tan y ! x and !
$

2
% y %

$

2

f !x" ! tan x, !$#2 % x % $#2 tan!1 arctan
!!$#2, $#2"

cos!1 $!1, 1% $0, $%

cos!cos!1x" ! x for !1 & x & 1

cos!1!cos x" ! x for 0 & x & $

0

y

x

1

ππ
2

FIGURE 21
y=cos x, 0¯x¯π

0

y

x1

π

_1

π
2

FIGURE 22
y=cos–! x=arccos x

cos!1x ! y &? cos y ! x and 0 & y & $

cos!1 arccos
f !x" ! cos x 0 & x & $

y ! x

sin!1 $!1, 1% $!$#2, $#2%

68 CHAPTER 1 FUNCTIONS AND MODELS

π
2

π
2_

y

0 x

FIGURE 23

y=tan x, _   <x<π
2

π
2

0

y

x1_1

π
2

_ π
2

FIGURE 20
y=sin–! x=arcsin x
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SECTION 1.6 INVERSE FUNCTIONS AND LOGARITHMS    69

SOLUTION 2 Instead of using trigonometric identities as in Solution 1, it is perhaps easier
to use a diagram. If , then , and we can read from Figure 24 (which
illustrates the case ) that

The inverse tangent function, , has domain and range .
Its graph is shown in Figure 25.

We know that the lines are vertical asymptotes of the graph of . Since the
graph of is obtained by reflecting the graph of the restricted tangent function about the
line , it follows that the lines and are horizontal asymptotes of
the graph of .

The remaining inverse trigonometric functions are not used as frequently and are sum-
marized here.

The choice of intervals for in the definitions of and is not universally agreed
upon. For instance, some authors use in the definition of .
(You can see from the graph of the secant function in Figure 26 that both this choice and the
one in will work.)11

y ! !0, !"2# " $!"2, !% sec" 1
y csc" 1 sec" 1

y ! cot" 1x $x ! !# &? cot y ! x and y ! $0, !#

y ! sec" 1x (& x & # 1) &? sec y ! x and y ! !0, !"2# " !!, 3!"2#

11 y ! csc" 1x (& x & # 1) &? csc y ! x and y ! $0, !"2% " $!, 3!"2%

tan" 1
y ! x y ! !"2 y ! " !"2

tan" 1
x ! $ !"2 tan

FIGURE 25
y=tan–! x=arctan x

π
2

_ π
2

y

0
x

tan" 1 ! arctan ! $" !"2, !"2#

cos$tan" 1x# ! cos y !
1

s1 % x 2

y & 0
y ! tan" 1x tan y ! x

FIGURE 26
y=sec x

0

y

x
_1 2ππ

œ„„„„„1+≈

1
y

x

FIGURE 24

1. (a) What is a one-to-one function?
(b) How can you tell from the graph of a function whether it is

one-to-one?

2. (a) Suppose is a one-to-one function with domain and
range . How is the inverse function defined? What is
the domain of ? What is the range of ?

(b) If you are given a formula for , how do you find a 
formula for ?

(c) If you are given the graph of , how do you find the graph
of ?f " 1

f
f " 1

f
f " 1f " 1

f " 1B
Af

3–14 A function is given by a table of values, a graph, a formula, or
a verbal description. Determine whether it is one-to-one.

3.

4.

1.6 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

x 1 2 3 4 5 6

1.5 2.0 3.6 5.3 2.8 2.0f $x#

x 1 2 3 4 5 6

1.0 1.9 2.8 3.5 3.1 2.9f $x#
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70 CHAPTER 1 FUNCTIONS AND MODELS

5. 6.

7. 8.

9. 10.

11. 12.

13. is the height of a football t seconds after kickoff.

14. is your height at age t.

15. Assume that is a one-to-one function.
(a) If , what is ?
(b) If , what is ?

16. If , find and .

17. If , find .

18. The graph of is given.
(a) Why is one-to-one?
(b) What are the domain and range of ?
(c) What is the value of ?
(d) Estimate the value of .

19. The formula , where , expresses
the Celsius temperature C as a function of the Fahrenheit tem-
perature F. Find a formula for the inverse function and
interpret it. What is the domain of the inverse function?

20. In the theory of relativity, the mass of a particle with speed 
is

where is the rest mass of the particle and is the speed of
light in a vacuum. Find the inverse function of and explain
its meaning.

21–26 Find a formula for the inverse of the function.

21. 22.f !x" ! 1 ! s2 ! 3x f !x" !
4x " 1
2x ! 3

f
cm 0

m ! f !v" !
m 0

s1 " v 2#c 2

v

F # "459.67C ! 5
9 !F " 32"

y

x0 1

1

f "1!0"
f "1!2"

f "1
f
f

t"1!4"t!x" ! 3 ! x ! ex
f ( f "1!2")f "1!3"f !x" ! x 5 ! x 3 ! x

f !2"f "1!3" ! 2
f "1!17"f !6" ! 17

f

f !t"

f !t"

t!x" ! cos xt!x" ! 1#x

f !x" ! 10 " 3xf !x" ! x 2 " 2x

y

xx

y

y

x
x

y 23. 24. ,  

25. 26.

; 27–28 Find an explicit formula for and use it to graph ,
and the line on the same screen. To check your work, see
whether the graphs of and are reflections about the line.

27. ,  28.

29–30 Use the given graph of to sketch the graph of .

29. 30.

31. Let , .
(a) Find . How is it related to ?
(b) Identify the graph of and explain your answer to part (a).

32. Let .
(a) Find . How is it related to ?

; (b) Graph . How do you explain your answer to part (a)?

33. (a) How is the logarithmic function defined?
(b) What is the domain of this function?
(c) What is the range of this function?
(d) Sketch the general shape of the graph of the function 

if .

34. (a) What is the natural logarithm?
(b) What is the common logarithm?
(c) Sketch the graphs of the natural logarithm function and the

natural exponential function with a common set of axes.

35–38 Find the exact value of each expression.

35. (a) (b)

36. (a) (b)

37. (a)
(b)

38. (a) (b)

39–41 Express the given quantity as a single logarithm.

39.

40.

41.

42. Use Formula 10 to evaluate each logarithm correct to six 
decimal places.
(a) (b) log2 8.4log12 10

1
3 ln!x ! 2"3 ! 1

2 $ln x " ln!x 2 ! 3x ! 2"2%

ln!a ! b" ! ln!a " b" " 2 ln c

ln 5 ! 5 ln 3

ln(ln ee10)e"2 ln 5

log3 100 " log3 18 " log3 50
log2 6 " log2 15 ! log2 20

log10 s10ln!1#e"

log3 ( 1
27)log5 125

a $ 1y ! loga x

y ! loga x

t
tt"1

t!x" ! s3 1 " x 3

f
ff "1

0 % x % 1f !x" ! s1 " x 2

y

x0 2

1
y

x0 1

1

f "1f

f !x" ! 2 " e xx # 0f !x" ! x 4 ! 1

f "1f
y ! x

ff "1,f "1

y !
e x

1 ! 2e x
y ! ln!x ! 3"

x # 1
2y ! x 2 " xf !x" ! e 2x"1
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SECTION 1.6 INVERSE FUNCTIONS AND LOGARITHMS    71

; 43–44 Use Formula 10 to graph the given functions on a common
screen. How are these graphs related?

43. ,  ,  ,  

44. ,  ,  ,  

45. Suppose that the graph of is drawn on a coordinate
grid where the unit of measurement is an inch. How many
miles to the right of the origin do we have to move before the
height of the curve reaches ft?

; 46. Compare the functions and by graph-
ing both and in several viewing rectangles. When does
the graph of finally surpass the graph of ?

47–48 Make a rough sketch of the graph of each function. Do not
use a calculator. Just use the graphs given in Figures 12 and 13
and, if necessary, the transformations of Section 1.3.

47. (a) (b)

48. (a) (b)

49–50 (a) What are the domain and range of ?
(b) What is the -intercept of the graph of ?
(c) Sketch the graph of .

49. 50.

51–54 Solve each equation for .

51. (a) (b)

52. (a) (b)

53. (a) (b)

54. (a) (b) , where 

55–56 Solve each inequality for .

55. (a) (b)

56. (a) (b)

57. (a) Find the domain of .
(b) Find and its domain.

58. (a) What are the values of and ?
(b) Use your calculator to evaluate and . What

do you notice? Can you explain why the calculator has
trouble?

59. Graph the function and explain
why it is one-to-one. Then use a computer algebra system 
to find an explicit expression for . (Your CAS will 
produce three possible expressions. Explain why two of them
are irrelevant in this context.)

60. (a) If , use a computer algebra sys tem
to find an expression for .t !1!x"

CAS t!x" ! x 6 " x 4, x # 0

f !1!x"

f !x" ! sx 3 " x 2 " x " 1CAS

ln!e 300"e ln 300
ln!e 300"e ln 300

f !1
f !x" ! ln!e x ! 3"

1 ! 2 ln x $ 31 $ e 3x!1 $ 2

e x % 5ln x $ 0

x

a " beax ! Cebxln!ln x" ! 1

ln x " ln!x ! 1" ! 12x!5 ! 3

e 2x ! 3e x " 2 ! 0ln!x 2 ! 1" ! 3

ln!3x ! 10" ! 2e7!4x ! 6

x

f !x" ! ln!x ! 1" ! 1f !x" ! ln x " 2

f
fx
f

y ! ln!!x" y ! ln # x #
y ! !ln xy ! log10!x " 5"

tf
tf

t!x" ! ln xf !x" ! x 0.1

3

y ! log2 x

y ! 10 xy ! e xy ! log10 xy ! ln x

y ! log50 xy ! log10 xy ! ln xy ! log1.5 x

(b) Use the expression in part (a) to graph ,
and on the same screen.

61. If a bacteria population starts with 100 bacteria and doubles
every three hours, then the number of bacteria after hours 
is . (See Exercise 29 in Section 1.5.)
(a) Find the inverse of this function and explain its meaning.
(b) When will the population reach 50,000?

62. When a camera flash goes off, the batteries immediately
begin to recharge the flash’s capacitor, which stores electric
charge given by

(The maximum charge capacity is and is measured in 
seconds.)
(a) Find the inverse of this function and explain its meaning.
(b) How long does it take to recharge the capacitor to 90%

of capacity if ?

63–68 Find the exact value of each expression.

63. (a) (b)

64. (a) (b)

65. (a) (b)

66. (a) (b)

67. (a) (b)

68. (a) (b)

69. Prove that .

70–72 Simplify the expression.

70. 71.

72.

; 73–74 Graph the given functions on the same screen. How are
these graphs related?

73. , ;  ;  

74. , ;  ;  

75. Find the domain and range of the function

; 76. (a) Graph the function and explain the
appearance of the graph.

(b) Graph the function . How do you
explain the appearance of this graph?

77. (a) If we shift a curve to the left, what happens to its reflec-
tion about the line ? In view of this geometric 
principle, find an expression for the inverse of

, where is a one-to-one function.
(b) Find an expression for the inverse of , 

where .

y ! t!x", y ! x

c " 0
h!x" ! f !cx"

ft!x" ! f !x " c"

y ! x

t!x" ! sin!1!sin x"

f !x" ! sin!sin!1x"

t!x" ! sin!1!3x " 1"

y ! xy ! tan!1x!&$2 $ x $ &$2y ! tan x

y ! xy ! sin!1x!&$2 ' x ' &$2y ! sin x

cos!2 tan!1x"

sin!tan!1x"tan!sin!1x"

cos!sin!1 x" ! s1 ! x 2

sin(2 sin!1(3
5))tan!sec!1 4"

sin!1!sin!7&$3""tan!arctan 10"

arccos(!1
2)cot!1(!s3 )

sin!1(1$s2 )arctan 1

sec!1 2tan!1(1$s3 )
cos!1!!1"sin!1(s3$2)

a ! 2

tQ0

Q!t" ! Q0!1 ! e!t$a "

n ! f !t" ! 100 ( 2 t$3
t

y ! t !1!x"
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72 CHAPTER 1 FUNCTIONS AND MODELS

1. (a) What is a function? What are its domain and range?
(b) What is the graph of a function?
(c) How can you tell whether a given curve is the graph of

a function?

2. Discuss four ways of representing a function. Illustrate your
discussion with examples.

3. (a) What is an even function? How can you tell if a function is
even by looking at its graph? Give three examples of an
even function.

(b) What is an odd function? How can you tell if a function is
odd by looking at its graph? Give three examples of an odd
function.

4. What is an increasing function?

5. What is a mathematical model?

6. Give an example of each type of function.
(a) Linear function (b) Power function
(c) Exponential function (d) Quadratic function
(e) Polynomial of degree 5 (f) Rational function

7. Sketch by hand, on the same axes, the graphs of the following
functions.
(a) (b)
(c) (d)

8. Draw, by hand, a rough sketch of the graph of each function.
(a) (b)
(c) (d)
(e) (f)
(g) (h)y ! sx y ! tan!1x

y ! 1!x y ! " x "
y ! e x y ! ln x
y ! sin x y ! tan x

h#x$ ! x 3 j#x$ ! x 4
f #x$ ! x t#x$ ! x 2

9. Suppose that has domain and has domain .
(a) What is the domain of ?
(b) What is the domain of ?
(c) What is the domain of ?

10. How is the composite function defined? What is its
domain?

11. Suppose the graph of is given. Write an equation for each of
the graphs that are obtained from the graph of as follows.
(a) Shift 2 units upward.
(b) Shift 2 units downward.
(c) Shift 2 units to the right.
(d) Shift 2 units to the left.
(e) Reflect about the x-axis.
(f) Reflect about the y-axis.
(g) Stretch vertically by a factor of 2.
(h) Shrink vertically by a factor of 2.
( i ) Stretch horizontally by a factor of 2.
( j) Shrink horizontally by a factor of 2.

12. (a) What is a one-to-one function? How can you tell if a func-
tion is one-to-one by looking at its graph?

(b) If is a one-to-one function, how is its inverse function 
defined? How do you obtain the graph of from the

graph of ?

13. (a) How is the inverse sine function defined?
What are its domain and range?

(b) How is the inverse cosine function defined?
What are its domain and range?

(c) How is the inverse tangent function defined?
What are its domain and range?

f #x$ ! tan!1x

f #x$ ! cos!1x

f #x$ ! sin!1x

f
f !1f !1

f

f
f

f ! t
f!t
f t
f " t

BtAf

1 Review

Concept Check

Determine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1. If is a function, then .

2. If , then .

3. If is a function, then .

4. If and is a decreasing function, then .

5. A vertical line intersects the graph of a function at most once.

6. If and are functions, then .

7. If is one-to-one, then .f !1#x$ !
1
f #x$

f

f ! t ! t ! ftf

f #x1 $ # f #x2 $fx1 $ x2

f #3x$ ! 3 f #x$f

s ! tf #s$ ! f #t$

f #s " t$ ! f #s$ " f #t$f

8. You can always divide by .

9. If , then .

10. If , then .

11. If and , then .

12.

13.

14. If is any real number, then .

e x

sx 2 ! xx

tan!1x !
sin!1x
cos!1x

tan!1#!1$ ! 3%!4

ln x
ln a

! ln
x
a

a # 1x # 0

#ln x$6 ! 6 ln xx # 0

ln a $ ln b0 $ a $ b

True-False Quiz
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CHAPTER 1 REVIEW    73

; Graphing calculator or computer required

1. Let be the function whose graph is given.
(a) Estimate the value of .
(b) Estimate the values of such that .
(c) State the domain of 
(d) State the range of 
(e) On what interval is increasing?
(f) Is one-to-one? Explain.
(g) Is even, odd, or neither even nor odd? Explain.

2. The graph of is given.
(a) State the value of .
(b) Why is one-to-one?
(c) Estimate the value of .
(d) Estimate the domain of .
(e) Sketch the graph of .

3. If , evaluate the difference quotient

4. Sketch a rough graph of the yield of a crop as a function of the
amount of fertilizer used.

5–8 Find the domain and range of the function. Write your answer
in interval notation.

5. 6.

7. 8. F!t" ! 3 ! cos 2th!x" ! ln!x ! 6"

t!x" ! s16 " x 4f !x" ! 2#!3x " 1"

f !a ! h" " f !a"
h

f !x" ! x 2 " 2x ! 3

gy

x0 1

1

t"1
t"1

t"1!2"
t

t!2"
t

y

x1
1

f

f
f

f
f.
f.

f !x" ! 3x
f !2"

f 9. Suppose that the graph of is given. Describe how the graphs
of the following functions can be obtained from the graph of 
(a) (b)
(c) (d)
(e) (f)

10. The graph of is given. Draw the graphs of the following 
functions.
(a) (b)
(c) (d)
(e) (f)

11–16 Use transformations to sketch the graph of the function.

11. 12.

13. 14.

15.

16.

17. Determine whether is even, odd, or neither even nor odd.
(a)
(b)
(c)
(d)

18. Find an expression for the function whose graph consists of 
the line segment from the point to the point
together with the top half of the circle with center the origin
and radius 1.

19. If and , find the functions (a) ,
(b) , (c) , (d) , and their domains.

20. Express the function as a composition of
three functions.

F!x" ! 1#sx ! sx

t ! tf ! ft ! f
f ! tt!x" ! x 2 " 9f !x" ! ln x

!"1, 0"!"2, 2"

f !x" ! 1 ! sin x
f !x" ! e"x 2
f !x" ! x 3 " x 7
f !x" ! 2x 5 " 3x 2 ! 2

f

f !x" ! $"x
e x " 1

if x # 0
if x $ 0

f !x" !
1

x ! 2

y ! 2 " sxy ! 1
2!1 ! e x "

y ! 3 ln!x " 2"y ! "sin 2x

y

x0 1

1

y ! f "1!x ! 3"y ! f "1!x"
y ! 1

2 f !x" " 1y ! 2 " f !x"
y ! "f !x"y ! f !x " 8"

f

y ! f "1!x"y ! "f !x"
y ! f !x " 2" " 2y ! 1 ! 2 f !x"
y ! f !x ! 8"y ! f !x" ! 8

f.
f

Exercises
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74 CHAPTER 1 FUNCTIONS AND MODELS

21. Life expectancy improved dramatically in the 20th century. The
table gives the life expectancy at birth ( in years) of males born
in the United States. Use a scatter plot to choose an appropriate
type of model. Use your model to predict the life span of a
male born in the year 2010.

22. A small-appliance manufacturer finds that it costs $9000 to
produce 1000 toaster ovens a week and $12,000 to produce
1500 toaster ovens a week.
(a) Express the cost as a function of the number of toaster

ovens produced, assuming that it is linear. Then sketch the
graph.

(b) What is the slope of the graph and what does it represent?
(c) What is the y-intercept of the graph and what does it 

represent?

23. If , find .f !x" ! 2x ! ln x f "1!2"

24. Find the inverse function of .

25. Find the exact value of each expression.
(a) (b)
(c) (d)

26. Solve each equation for x.
(a) (b)
(c) (d)

27. The population of a certain species in a limited environment
with initial population 100 and carrying capacity 1000 is

where is measured in years.
; (a) Graph this function and estimate how long it takes for the

population to reach 900.
(b) Find the inverse of this function and explain its meaning.
(c) Use the inverse function to find the time required for the

population to reach 900. Compare with the result of
part (a).

; 28. Graph the three functions , , and on
the same screen for two or three values of . For large 
values of x, which of these functions has the largest values 
and which has the smallest values?

f !x" !
x ! 1

2x ! 1

a # 1
y ! loga xy ! axy ! xa

t

P!t" !
100,000

100 ! 900e"t

tan"1x ! 1e e
x

! 2
ln x ! 2e x ! 5

sin(cos"1(4
5))tan(arcsin 1

2 )
log10 25 ! log10 4e 2 ln 3

Birth year Life expectancy Birth year Life expectancy

1900 48.3 1960 66.6
1910 51.1 1970 67.1
1920 55.2 1980 70.0
1930 57.4 1990 71.8
1940 62.5 2000 73.0
1950 65.6
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There are no hard and fast rules that will ensure success in solving problems. However, it is
possible to outline some general steps in the problem-solving process and to give some prin-
ciples that may be useful in the solution of certain problems. These steps and prin ciples are
just common sense made explicit. They have been adapted from George Polya’s book How
To Solve It.

The first step is to read the problem and make sure that you understand it clearly. Ask your-
self the following questions:

For many problems it is useful to

draw a diagram

and identify the given and required quantities on the diagram.
Usually it is necessary to

introduce suitable notation

In choosing symbols for the unknown quantities we often use letters such as a, b, c, m, n,
x, and y, but in some cases it helps to use initials as suggestive symbols; for instance, for
volume or for time.

Find a connection between the given information and the unknown that will enable you to
calculate the unknown. It often helps to ask yourself explicitly: “How can I relate the given
to the unknown?” If you don’t see a connection immediately, the following ideas may be
helpful in devising a plan.

Try to Recognize Something Familiar Relate the given situation to previous knowledge.
Look at the unknown and try to recall a more familiar problem that has a similar unknown.

Try to Recognize Patterns Some problems are solved by recognizing that some kind of
pattern is occurring. The pattern could be geometric, or numerical, or algebraic. If you can
see regularity or repetition in a problem, you might be able to guess what the continuing
pattern is and then prove it.

Use Analogy Try to think of an analogous problem, that is, a similar problem, a related
problem, but one that is easier than the original problem. If you can solve the similar, sim-
pler problem, then it might give you the clues you need to solve the original, more difficult
problem. For instance, if a problem involves very large numbers, you could first try a sim-
ilar problem with smaller numbers. Or if the problem involves three-dimensional geome-
try, you could look for a similar problem in two-dimensional geometry. Or if the problem
you start with is a general one, you could first try a special case.

Introduce Something Extra It may sometimes be necessary to introduce something new,
an auxiliary aid, to help make the connection between the given and the unknown. For
instance, in a problem where a diagram is useful the auxiliary aid could be a new line drawn
in a diagram. In a more algebraic problem it could be a new unknown that is related to the
original unknown.

2 THINK OF A PLAN

t
V

What is the unknown?
What are the given quantities?
What are the given conditions?

1 UNDERSTAND THE PROBLEM

Principles of Problem Solving

75
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76

Take Cases We may sometimes have to split a problem into several cases and give a dif-
ferent argument for each of the cases. For instance, we often have to use this strategy in
dealing with absolute value.

Work Backward Sometimes it is useful to imagine that your problem is solved and work
backward, step by step, until you arrive at the given data. Then you may be able to reverse
your steps and thereby construct a solution to the original problem. This procedure is com-
monly used in solving equations. For instance, in solving the equation , we sup-
pose that is a number that satisfies and work backward. We add 5 to each side
of the equation and then divide each side by 3 to get . Since each of these steps can
be reversed, we have solved the problem.

Establish Subgoals In a complex problem it is often useful to set subgoals ( in which the
desired situation is only partially fulfilled). If we can first reach these subgoals, then we
may be able to build on them to reach our final goal.

Indirect Reasoning Sometimes it is appropriate to attack a problem indirectly. In using
proof by contradiction to prove that implies , we assume that is true and is false and
try to see why this can’t happen. Somehow we have to use this information and arrive at a
contradiction to what we absolutely know is true.

Mathematical Induction In proving statements that involve a positive integer , it is fre-
quently helpful to use the following principle.

Principle of Mathematical Induction Let be a statement about the positive integer .
Suppose that
1. is true.
2. is true whenever is true.

Then is true for all positive integers .

This is reasonable because, since is true, it follows from condition 2 (with ) 
that is true. Then, using condition 2 with , we see that is true. Again using 
condition 2, this time with , we have that is true. This procedure can be followed
indefinitely.

In Step 2 a plan was devised. In carrying out that plan we have to check each stage of the
plan and write the details that prove that each stage is correct.

Having completed our solution, it is wise to look back over it, partly to see if we have made
errors in the solution and partly to see if we can think of an easier way to solve the prob-
lem. Another reason for looking back is that it will familiarize us with the method of solu-
tion and this may be useful for solving a future problem. Descartes said, “Every problem
that I solved became a rule which served afterwards to solve other problems.”

These principles of problem solving are illustrated in the following examples. Before
you look at the solutions, try to solve these problems yourself, referring to these Principles
of Problem Solving if you get stuck. You may find it useful to refer to this section from time
to time as you solve the exercises in the remaining chapters of this book.

4 LOOK BACK

3 CARRY OUT THE PLAN

k ! 3 S4

S2 k ! 2 S3

S1 k ! 1

Sn n

Sk!1 Sk
S1

Sn n

n

P Q P Q

x ! 4
x 3x " 5 ! 7

3x " 5 ! 7
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Express the hypotenuse of a right triangle with area as a function of
its perimeter P.

SOLUTION Let’s first sort out the information by identifying the unknown quantity and the
data:

It helps to draw a diagram and we do so in Figure 1.

In order to connect the given quantities to the unknown, we introduce two extra vari-
ables and , which are the lengths of the other two sides of the triangle. This enables us
to express the given condition, which is that the triangle is right-angled, by the Pythago -
rean Theorem:

The other connections among the variables come by writing expressions for the area and
perimeter:

Since is given, notice that we now have three equations in the three unknowns , , 
and :

Although we have the correct number of equations, they are not easy to solve in a
straightforward fashion. But if we use the problem-solving strategy of trying to recognize
something familiar, then we can solve these equations by an easier method. Look at the
right sides of Equations 1, 2, and 3. Do these expressions remind you of anything famil-
iar? Notice that they contain the ingredients of a familiar formula:

Using this idea, we express in two ways. From Equations 1 and 2 we have

From Equation 3 we have

Thus

This is the required expression for h as a function of P.

h !
P2 ! 100

2P

2Ph ! P2 ! 100

h 2 " 100 ! P2 ! 2Ph " h 2

!a " b"2 ! !P ! h"2 ! P2 ! 2Ph " h 2

!a " b"2 ! !a 2 " b 2 " " 2ab ! h 2 " 4!25"

!a " b"2

!a " b"2 ! a 2 " 2ab " b 2

3 P ! a " b " h

2 25 ! 1
2ab

1 h 2 ! a 2 " b 2

h
P a b

25 ! 1
2ab P ! a " b " h

h 2 ! a 2 " b 2

a b

a

h
b

FIGURE 1

Given quantities: perimeter P, area 25 m2

Unknown: hypotenuse h

EXAMPLE 1 25 m2h
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Understand the problemPS

Draw a diagramPS

Connect the given with the unknown
Introduce something extraPS

PS

Relate to the familiarPS
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As the next example illustrates, it is often necessary to use the problem-solving prin ciple
of taking cases when dealing with absolute values.

Solve the inequality .

SOLUTION Recall the definition of absolute value:

It follows that

Similarly

These expressions show that we must consider three cases:

CASE I If , we have

CASE II If the given inequality becomes

(always true)

CASE III If , the inequality becomes

Combining cases I, II, and III, we see that the inequality is satisfied when . 
So the solution is the interval .

EXAMPLE 2

!!5, 6"
!5 " x " 6

x " 6

2x " 12

x ! 3 # x # 2 " 11

x $ 3

5 " 11

!x # 3 # x # 2 " 11

!2 % x " 3,

x & !5

!2x " 10

!x # 3 ! x ! 2 " 11
# x ! 3 # # # x # 2 # " 11

x " !2

x $ 3!2 % x " 3x " !2

! $x # 2
!x ! 2

if x $ !2
if x " !2

# x # 2 # ! $x # 2
!!x # 2"

if x # 2 $ 0
if x # 2 " 0

! $x ! 3
!x # 3

if x $ 3
if x " 3

# x ! 3 # ! $x ! 3
!!x ! 3"

if x ! 3 $ 0
if x ! 3 " 0

# x # ! $x!x
if x $ 0
if x " 0

# x ! 3 # # # x # 2 # " 11

78

Take casesPS
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In the following example we first guess the answer by looking at special cases and rec-
ognizing a pattern. Then we prove our conjecture by mathematical induction.

In using the Principle of Mathematical Induction, we follow three steps:

Step 1 Prove that is true when .

Step 2 Assume that is true when and deduce that is true when 

Step 3 Conclude that is true for all n by the Principle of Mathematical Induction.

If and for n ! 0, 1, 2, . . . , find a formula 
for .

SOLUTION We start by finding formulas for for the special cases n ! 1, 2, and 3.

We notice a pattern: The coefficient of x in the denominator of is n ! 1 in the
three cases we have computed. So we make the guess that, in general,

To prove this, we use the Principle of Mathematical Induction. We have already verified
that is true for . Assume that it is true for , that is,4

EXAMPLE 3

n ! 1 n ! k

fn!x" !
x

!n ! 1"x ! 1
4

fn!x"

!

x
3x ! 1
x

3x ! 1
! 1

!

x
3x ! 1
4x ! 1
3x ! 1

!
x

4x ! 1

f3!x" ! ! f0 ! f2 "!x" ! f0( f2!x") ! f0# x
3x ! 1$

!

x
2x ! 1
x

2x ! 1
! 1

!

x
2x ! 1
3x ! 1
2x ! 1

!
x

3x ! 1

f2!x" ! ! f0 ! f1 "!x" ! f0( f1!x") ! f0# x
2x ! 1$

!

x
x ! 1
x

x ! 1
! 1

!

x
x ! 1

2x ! 1
x ! 1

!
x

2x ! 1

f1!x" ! ! f0 ! f0"!x" ! f0( f0!x") ! f0# x
x ! 1$

fn!x"

fn!x"
fn!1 ! f0 ! fnf0!x" ! x%!x ! 1"

Sn

n ! k ! 1.Snn ! kSn

n ! 1Sn

79

Analogy: Try a similar, simpler problemPS

Look for a patternPS
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Then

This expression shows that is true for . Therefore, by mathematical induc-
tion, it is true for all positive integers n.

1. One of the legs of a right triangle has length 4 cm. Express the length of the altitude perpen-
dicular to the hypotenuse as a function of the length of the hypotenuse.

2. The altitude perpendicular to the hypotenuse of a right triangle is 12 cm. Express the length
of the hypotenuse as a function of the perimeter.

3. Solve the equation .

4. Solve the inequality .

5. Sketch the graph of the function .

6. Sketch the graph of the function .

7. Draw the graph of the equation 

8. Sketch the region in the plane consisting of all points such that 

9. The notation means the largest of the numbers . Sketch the graph of
each function.
(a) (b) (c) 

10. Sketch the region in the plane defined by each of the following equations or inequalities.
(a) (b) (c)

11. Evaluate .

12. (a) Show that the function is an odd function.
(b) Find the inverse function of 

13. Solve the inequality .

14. Use indirect reasoning to prove that is an irrational number.

15. A driver sets out on a journey. For the first half of the distance she drives at the leisurely pace
of 30 mi!h; she drives the second half at 60 mi!h. What is her average speed on this trip?

16. Is it true that ?

17. Prove that if n is a positive integer, then is divisible by 6.

18. Prove that .

19. If and for find a formula for .

20. (a) If and for find an expression for and

use mathematical induction to prove it.
; (b) Graph on the same screen and describe the effects of repeated composition.

4

f0, f1, f2, f3

fn"x#n ! 0, 1, 2, . . . ,fn!1 ! f0 ! fnf0"x# !
1

2 " x

fn"x#n ! 0, 1, 2, . . . ,fn!1"x# ! f0( fn"x#)f0"x# ! x 2

1 ! 3 ! 5 ! ### ! "2n " 1# ! n2

7n " 1

f ! "t ! h# ! f ! t ! f ! h

log2 5

ln"x 2 " 2x " 2# $ 0

f.
f "x# ! ln(x ! sx 2 ! 1)

"log2 3#"log3 4#"log4 5# # # #"log31 32#

max$x, y 2% ! 1"1 $ max$x, 2y% $ 1max$x, 2y% ! 1

f "x# ! max$x 2, 2 ! x, 2 " x%f "x# ! max$sin x, cos x%f "x# ! max$x, 1!x%

a, b, . . .max$a, b, . . .%
& x " y & ! & x & " & y & $ 2

"x, y#

x ! & x & ! y ! & y &.
t"x# ! & x 2 " 1 & " & x 2 " 4 &

& x 2 " 4& x & ! 3 &f "x# !

& x " 1 & " & x " 3 & % 5
& x ! 5 & ! 3& 2x " 1 & "

n ! k ! 1

!

x
"k ! 1#x ! 1

x
"k ! 1#x ! 1

! 1
!

x
"k ! 1#x ! 1
"k ! 2#x ! 1
"k ! 1#x ! 1

!
x

"k ! 2#x ! 1

fk!1"x# ! "f0 ! fk #"x# ! f0( fk"x#) ! f0' x
"k ! 1#x ! 1(

80

Problems

; Graphing calculator or computer required
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Limits and Derivatives2

In A Preview of Calculus (page 1) we saw how the idea of a limit underlies the various branches of 
calculus. It is therefore appropriate to begin our study of calculus by investigating limits and their 
properties. The special type of limit that is used to find tangents and velocities gives rise to the central
idea in differential calculus, the derivative.

81

© 1986 Peticolas / Megna, Fundamental Photographs, NYC

A ball falls faster and faster as time
passes. Galileo discovered that the
distance fallen is proportional to the
square of the time it has been falling.
Calculus then enables us to calculate the
speed of the ball at any time.
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82 CHAPTER 2 LIMITS AND DERIVATIVES

2.1 The Tangent and Velocity Problems

In this section we see how limits arise when we attempt to find the tangent to a curve or
the velocity of an object.

The Tangent Problem
The word tangent is derived from the Latin word tangens, which means “touching.” Thus
a tangent to a curve is a line that touches the curve. In other words, a tangent line should have
the same direction as the curve at the point of contact. How can this idea be made precise?

For a circle we could simply follow Euclid and say that a tangent is a line that intersects
the circle once and only once, as in Figure 1(a). For more complicated curves this defini-
tion is inadequate. Figure l(b) shows two lines and passing through a point on a curve

. The line intersects only once, but it certainly does not look like what we think of as
a tangent. The line , on the other hand, looks like a tangent but it intersects twice.

To be specific, let’s look at the problem of trying to find a tangent line to the parabola
in the following example.

Find an equation of the tangent line to the parabola at the 
point .

SOLUTION We will be able to find an equation of the tangent line as soon as we know its
slope . The difficulty is that we know only one point, , on , whereas we need two
points to compute the slope. But observe that we can compute an approximation to by
choosing a nearby point on the parabola (as in Figure 2) and computing the slope

of the secant line . [A secant line, from the Latin word secans, meaning cutting, is
a line that cuts (intersects) a curve more than once.]

We choose so that . Then

For instance, for the point we have

The tables in the margin show the values of for several values of close to 1. The
closer is to , the closer is to 1 and, it appears from the tables, the closer is to 2.
This suggests that the slope of the tangent line should be .

We say that the slope of the tangent line is the limit of the slopes of the secant lines,
and we express this symbolically by writing

and    

Assuming that the slope of the tangent line is indeed 2, we use the point-slope form
of the equation of a line (see Appendix B) to write the equation of the tangent line
through as

y ! 1 ! 2!x ! 1" or y ! 2x ! 1

!1, 1"

lim
xl 1

x 2 ! 1
x ! 1

! 2lim
QlP

mPQ ! m

m ! 2t
mPQxPQ

xmPQ

mPQ !
2.25 ! 1
1.5 ! 1

!
1.25
0.5

! 2.5

Q!1.5, 2.25"

mPQ !
x 2 ! 1
x ! 1

Q " Px " 1

PQmPQ

Q!x, x 2 "
m

tPm
t

P!1, 1"
y ! x 2EXAMPLE 1v

y ! x 2
t
Ct

ClC
Ptl

(a)

(b)

t

FIGURE 1

P
Ct

l

FIGURE 2 

x

y

0

y=≈

tQ{x, ≈}

P(1, 1)

x

2 3
1.5 2.5
1.1 2.1
1.01 2.01
1.001 2.001

mPQ

x

0 1
0.5 1.5
0.9 1.9
0.99 1.99
0.999 1.999

mPQ
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Figure 3 illustrates the limiting process that occurs in this example. As approaches
along the parabola, the corresponding secant lines rotate about and approach the

tangent line .

Many functions that occur in science are not described by explicit equations; they are
defined by experimental data. The next example shows how to estimate the slope of the
tangent line to the graph of such a function.

The flash unit on a camera operates by storing charge on a capacitor and
releasing it suddenly when the flash is set off. The data in the table describe the charge Q
remaining on the capacitor (measured in microcoulombs) at time t (measured in seconds
after the flash goes off). Use the data to draw the graph of this function and estimate the
slope of the tangent line at the point where t ! 0.04. [Note: The slope of the tangent line
represents the electric current flowing from the capacitor to the flash bulb (measured in
microamperes).]

SOLUTION In Figure 4 we plot the given data and use them to sketch a curve that approx-
imates the graph of the function.

FIGURE 4
t

Q

A

B C

P

0 0.02 0.04 0.06 0.08 0.1

90
100

60
70
80

50

(seconds)

(microcoulombs)

v EXAMPLE 2

FIGURE 3 

Q approaches P from the right

Q approaches P from the left

P

y

x0

Q

t

P

y

x0

Q
t

P

y

x0

Q

t

P

y

x0
Q

t

P

y

x0
Q

t

x0

P

y
Q

t

t
P P

Q
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In Visual 2.1 you can see how 
the process in Figure 3 works for additional 
functions.

TEC

t Q

0.00 100.00
0.02 81.87
0.04 67.03
0.06 54.88
0.08 44.93
0.10 36.76
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84 CHAPTER 2 LIMITS AND DERIVATIVES

Given the points and on the graph, we find that the
slope of the secant line PR is

The table at the left shows the results of similar calculations for the slopes of other
secant lines. From this table we would expect the slope of the tangent line at to
lie somewhere between !742 and !607.5. In fact, the average of the slopes of the two
closest secant lines is

So, by this method, we estimate the slope of the tangent line to be !675.
Another method is to draw an approximation to the tangent line at P and measure the

sides of the triangle ABC, as in Figure 4. This gives an estimate of the slope of the tan-
gent line as

The Velocity Problem
If you watch the speedometer of a car as you travel in city traffic, you see that the needle
doesn’t stay still for very long; that is, the velocity of the car is not constant. We assume
from watching the speedometer that the car has a definite velocity at each moment, but
how is the “instantaneous” velocity defined? Let’s investigate the example of a falling ball.

Suppose that a ball is dropped from the upper observation deck of the CN
Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 5 seconds.

SOLUTION Through experiments carried out four centuries ago, Galileo discovered that
the distance fallen by any freely falling body is proportional to the square of the time it
has been falling. (This model for free fall neglects air resistance.) If the distance fallen
after seconds is denoted by and measured in meters, then Galileo’s law is expressed
by the equation

The difficulty in finding the velocity after 5 s is that we are dealing with a single
instant of time , so no time interval is involved. However, we can approximate the
desired quantity by computing the average velocity over the brief time interval of a tenth
of a second from to :

!
4.9!5.1"2 ! 4.9!5"2

0.1
! 49.49 m#s

!
s!5.1" ! s!5"

0.1

average velocity !
change in position

time elapsed

t ! 5 t ! 5.1

!t ! 5"

s!t" ! 4.9t 2

t s!t"

v EXAMPLE 3

! $AB $
$BC $ % !

80.4 ! 53.6
0.06 ! 0.02

! !670

1
2 !!742 ! 607.5" ! !674.75

t ! 0.04

mPR !
100.00 ! 67.03

0.00 ! 0.04
! !824.25

P!0.04, 67.03" R!0.00, 100.00"

R

(0.00, 100.00) !824.25
(0.02, 81.87) !742.00
(0.06, 54.88) !607.50
(0.08, 44.93) !552.50
(0.10, 36.76) !504.50

mPR

The physical meaning of the answer in 
Example 2 is that the electric current flowing
from the capacitor to the flash bulb after
0.04 second is about –670 microamperes.
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The CN Tower in Toronto was the tallest free-
standing building in the world for 32 years.
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SECTION 2.1 THE TANGENT AND VELOCITY PROBLEMS 85

The following table shows the results of similar calculations of the average velocity over
successively smaller time periods.

It appears that as we shorten the time period, the average velocity is becoming closer to
49 m!s. The instantaneous velocity when is defined to be the limiting value of
these average velocities over shorter and shorter time periods that start at . Thus 
the (instantaneous) velocity after 5 s is

You may have the feeling that the calculations used in solving this problem are very sim-
ilar to those used earlier in this section to find tangents. In fact, there is a close connec-
tion between the tangent problem and the problem of finding velocities. If we draw the
graph of the distance function of the ball (as in Figure 5) and we consider the points

and on the graph, then the slope of the secant line 
is

which is the same as the average velocity over the time interval . Therefore the
velocity at time (the limit of these average velocities as approaches 0) must be 
equal to the slope of the tangent line at (the limit of the slopes of the secant lines).

Examples 1 and 3 show that in order to solve tangent and velocity problems we must be
able to find limits. After studying methods for computing limits in the next five sections, we
will return to the problems of finding tangents and velocities in Section 2.7.

FIGURE 5
t

s

Q

a a+h0

slope of secant line
! average velocity

P

s=4.9t @

t

s

0 a

slope of tangent line
! instantaneous velocityP

s=4.9t @

P
t ! a h

"a, a ! h#

mPQ !
4.9$a ! h%2 " 4.9a 2

$a ! h% " a

PQ
P$a, 4.9a 2% Q$a ! h, 4.9$a ! h%2%

v ! 49 m!s

t ! 5
t ! 5

Time interval Average velocity (m!s)

53.9
49.49
49.245
49.049
49.00495 # t # 5.001

5 # t # 5.01
5 # t # 5.05
5 # t # 5.1
5 # t # 6
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86 CHAPTER 2 LIMITS AND DERIVATIVES

1. A tank holds 1000 gallons of water, which drains from the 
bottom of the tank in half an hour. The values in the table show
the volume V of water remaining in the tank (in gallons) after
t minutes.

(a) If P is the point on the graph of V, find the slopes
of the secant lines PQ when Q is the point on the graph
with , 10, 20, 25, and 30.

(b) Estimate the slope of the tangent line at P by averaging the
slopes of two secant lines.

(c) Use a graph of the function to estimate the slope of the 
tangent line at P. (This slope represents the rate at which the
water is flowing from the tank after 15 minutes.)

2. A cardiac monitor is used to measure the heart rate of a patient
after surgery. It compiles the number of heartbeats after t min-
utes. When the data in the table are graphed, the slope of the
tangent line represents the heart rate in beats per minute.

The monitor estimates this value by calculating the slope of 
a secant line. Use the data to estimate the patient’s heart rate
after 42 minutes using the secant line between the points with
the given values of t.
(a) t ! 36  and  t ! 42 (b) t ! 38  and  t ! 42
(c) t ! 40  and  t ! 42 (d) t ! 42  and  t ! 44
What are your conclusions?

3. The point lies on the curve .
(a) If is the point , use your calculator to find

the slope of the secant line (correct to six decimal
places) for the following values of :

(i) 1.5 (ii) 1.9 (iii) 1.99 (iv) 1.999
(v) 2.5 (vi) 2.1 (vii) 2.01 (viii) 2.001

(b) Using the results of part (a), guess the value of the slope 
of the tangent line to the curve at .

(c) Using the slope from part (b), find an equation of the
tangent line to the curve at .

4. The point lies on the curve .
(a) If is the point , use your calculator to find 

the slope of the secant line (correct to six decimal
places) for the following values of :

(i) 0 (ii) 0.4 (iii) 0.49 (iv) 0.499
(v) 1 (vi) 0.6 (vii) 0.51 (viii) 0.501

(b) Using the results of part (a), guess the value of the slope 
of the tangent line to the curve at .P!0.5, 0"

x
PQ

!x, cos !x"Q
y ! cos !xP!0.5, 0"

P!2, " 1"

P!2, " 1"

x
PQ

!x, 1#!1 " x""Q
y ! 1#!1 " x"P!2, " 1"

t ! 5

!15, 250"

(c) Using the slope from part (b), find an equation of the
tangent line to the curve at .

(d) Sketch the curve, two of the secant lines, and the tangent
line.

5. If a ball is thrown into the air with a velocity of 40 ft#s, its
height in feet seconds later is given by .
(a) Find the average velocity for the time period beginning

when and lasting
(i) 0.5 second (ii) 0.1 second

(iii) 0.05 second (iv) 0.01 second
(b) Estimate the instantaneous velocity when 

6. If a rock is thrown upward on the planet Mars with a velocity
of 10 m#s, its height in meters seconds later is given by

(a) Find the average velocity over the given time intervals:
(i) [1, 2] (ii) [1, 1.5] (iii) [1, 1.1]

(iv) [1, 1.01] (v) [1, 1.001]
(b) Estimate the instantaneous velocity when .

7. The table shows the position of a cyclist.

(a) Find the average velocity for each time period:
(i) (ii) (iii) (iv) 

(b) Use the graph of as a function of to estimate the instan-
taneous velocity when .

8. The displacement (in centimeters) of a particle moving back 
and forth along a straight line is given by the equation of
motion , where is measured in 
seconds.
(a) Find the average velocity during each time period:

(i) [1, 2] (ii) [1, 1.1]
(iii) [1, 1.01] (iv) [1, 1.001]

(b) Estimate the instantaneous velocity of the particle 
when .

9. The point lies on the curve .
(a) If is the point , find the slope of the secant

line (correct to four decimal places) for , 1.5, 1.4,
1.3, 1.2, 1.1, 0.5, 0.6, 0.7, 0.8, and 0.9. Do the slopes
appear to be approaching a limit?

; (b) Use a graph of the curve to explain why the slopes of the
secant lines in part (a) are not close to the slope of the tan-
gent line at .

(c) By choosing appropriate secant lines, estimate the slope of
the tangent line at .P

P

x ! 2PQ
!x, sin!10!#x""Q

y ! sin!10!#x"P!1, 0"

t ! 1

ts ! 2 sin ! t # 3 cos ! t

t ! 3
ts

$3, 4%$3, 5%$2, 3%$1, 3%

t ! 1

y ! 10t " 1.86t 2.
t

t ! 2.

t ! 2

y ! 40t " 16t 2t

P!0.5, 0"

2.1 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

t (min) 5 10 15 20 25 30

V (gal) 694 444 250 111 28 0

t (min) 36 38 40 42 44

Heartbeats 2530 2661 2806 2948 3080 t (seconds) 0 1 2 3 4 5

s (meters) 0 1.4 5.1 10.7 17.7 25.8
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SECTION 2.2 THE LIMIT OF A FUNCTION 87

Having seen in the preceding section how limits arise when we want to find the tangent to
a curve or the velocity of an object, we now turn our attention to limits in general and
numerical and graphical methods for computing them.

Let’s investigate the behavior of the function defined by for val-
ues of near 2. The following table gives values of for values of close to 2 but not
equal to 2.

From the table and the graph of (a parabola) shown in Figure 1 we see that when is
close to 2 (on either side of 2), is close to 4. In fact, it appears that we can make the
values of as close as we like to 4 by taking sufficiently close to 2. We express this by
saying “the limit of the function as approaches 2 is equal to 4.” The
notation for this is

In general, we use the following notation.

Definition Suppose is defined when is near the number . (This means
that is defined on some open interval that contains , except possibly at itself.)
Then we write

and say “the limit of , as approaches , equals ”

if we can make the values of arbitrarily close to (as close to L as we like) by
taking x to be sufficiently close to (on either side of ) but not equal to .

Roughly speaking, this says that the values of approach as approaches . In other
words, the values of tend to get closer and closer to the number as gets closer and
closer to the number (from either side of ) but . (A more precise definition will be
given in Section 2.4.)

An alternative notation for

is as    

which is usually read “ approaches as approaches .”axLf !x"

x l af !x" l L

lim
xla

f !x" ! L

f !x"
axL

x " aaa
xL

f !x"

aaf
axf !x"

aaa
Lf !x"

Laxf !x"

lim
xla

f !x" ! L

1

lim
xl2

!x 2 ! x " 2" ! 4

xf !x" ! x 2 ! x " 2
xf !x"

f !x"
xf

xf !x"x
f !x" ! x 2 ! x " 2f

2.2 The Limit of a Function

4
ƒ

approaches
4.

x

y

2
As x approaches 2,

y=≈-x+2

0

FIGURE 1

x

3.0 8.000000
2.5 5.750000
2.2 4.640000
2.1 4.310000
2.05 4.152500
2.01 4.030100
2.005 4.015025
2.001 4.003001

f !x"x

1.0 2.000000
1.5 2.750000
1.8 3.440000
1.9 3.710000
1.95 3.852500
1.99 3.970100
1.995 3.985025
1.999 3.997001

f !x"
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88 CHAPTER 2 LIMITS AND DERIVATIVES

Notice the phrase “but ” in the definition of limit. This means that in find ing the
limit of as approaches , we never consider . In fact, need not even be 
defined when . The only thing that matters is how is defined near .

Figure 2 shows the graphs of three functions. Note that in part (c), is not defined and
in part (b), . But in each case, regardless of what happens at , it is true that

.

Guess the value of .

SOLUTION Notice that the function is not defined when ,
but that doesn’t matter because the definition of says that we consider values
of that are close to but not equal to .

The tables at the left give values of (correct to six decimal places) for values of
that approach 1 (but are not equal to 1). On the basis of the values in the tables, we make
the guess that

Example 1 is illustrated by the graph of in Figure 3. Now let’s change slightly by giv-
ing it the value 2 when and calling the resulting function :

This new function still has the same limit as approaches 1. (See Figure 4.)

EXAMPLE 1

0 1

0.5

x-1
≈-1y=

FIGURE 3 FIGURE 4 

0 1

0.5

y=©

2

y

x

y

x

xt

t(x) ! ! x ! 1
x 2 ! 1

if x " 1

2 if x ! 1

tx ! 1
ff

lim
xl 1

x ! 1
x 2 ! 1

! 0.5

xf " x#
aax

lim xl a f " x#
x ! 1f " x# ! " x ! 1#$" x 2 ! 1#

lim
xl1

x ! 1
x 2 ! 1

(c)

x

y

0

L

a

(b)

x

y

0

L

a

(a)

x

y

0

L

a

FIGURE 2 lim ƒ=L in all three cases
x    a

lim xl a f " x# ! L
af "a# " L

f "a#
afx ! a

f " x#x ! aaxf " x#
x " a

0.5 0.666667
0.9 0.526316
0.99 0.502513
0.999 0.500250
0.9999 0.500025

x " 1 f " x#

1.5 0.400000
1.1 0.476190
1.01 0.497512
1.001 0.499750
1.0001 0.499975

x # 1 f " x#
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SECTION 2.2 THE LIMIT OF A FUNCTION 89

Estimate the value of .

SOLUTION The table lists values of the function for several values of near 0.

As approaches 0, the values of the function seem to approach and so we
guess that

In Example 2 what would have happened if we had taken even smaller values of The
table in the margin shows the results from one calculator; you can see that something strange
seems to be happening.

If you try these calculations on your own calculator you might get different values, but
eventually you will get the value 0 if you make sufficiently small. Does this mean that 
the answer is really 0 instead of ? No, the value of the limit is , as we will show in the

| next section. The problem is that the calculator gave false values because is very
close to 3 when is small. (In fact, when is sufficiently small, a calculator’s value for

is to as many digits as the calculator is capable of carrying.)
Something similar happens when we try to graph the function

of Example 2 on a graphing calculator or computer. Parts (a) and (b) of Figure 5 show quite
accurate graphs of , and when we use the trace mode (if available) we can estimate eas-
ily that the limit is about . But if we zoom in too much, as in parts (c) and (d), then we get
inaccurate graphs, again because of problems with subtraction.

EXAMPLE 2 lim
tl 0

st 2 ! 9 " 3
t 2

t
1
6

1
6

st 2 ! 9
t t

st 2 ! 9 3.000. . .

FIGURE 5

0.1

0.2

(a) !_5, 5" by !_0.1, 0.3"

0.1

0.2

(b) !_0.1, 0.1" by !_0.1, 0.3" (c) !_10–^, 10–^" by !_0.1, 0.3" (d) !_10–&, 10–& " by !_0.1, 0.3"

1
6

f

f #t$ !
st 2 ! 9 " 3

t 2

t?

lim
tl 0

st 2 ! 9 " 3
t 2 !

1
6

0.1666666 . . .t

t

t

#1.0 0.16228
#0.5 0.16553
#0.1 0.16662
#0.05 0.16666
#0.01 0.16667

st 2 ! 9 " 3
t 2

t

#0.0005 0.16800
#0.0001 0.20000
#0.00005 0.00000
#0.00001 0.00000

st 2 ! 9 " 3
t 2

www.stewartcalculus.com

For a further explanation of why calculators
sometimes give false values, click on Lies My
Calculator and Computer Told Me. In particular,
see the section called The Perils of Subtraction.
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90 CHAPTER 2 LIMITS AND DERIVATIVES

Guess the value of .

SOLUTION The function is not defined when . Using a calculator
(and remembering that, if , means the sine of the angle whose radian mea-
sure is ), we construct a table of values correct to eight decimal places. From the table at
the left and the graph in Figure 6 we guess that

This guess is in fact correct, as will be proved in Chapter 3 using a geometric argument.

Investigate .

SOLUTION Again the function is undefined at 0. Evaluating the function
for some small values of , we get

Similarly, On the basis of this information we might be
tempted to guess that

| but this time our guess is wrong. Note that although for any integer
, it is also true that for infinitely many values of that approach 0. You can

see this from the graph of shown in Figure 7.

EXAMPLE 4v

FIGURE 7

y=sin(π/x)

x

y
1

1

_1

_1

f
xf !x" ! 1n

f !1#n" ! sin n! ! 0

lim
xl 0

sin
!

x
! 0

f !0.001" ! f !0.0001" ! 0.

f !0.01" ! sin 100! ! 0f !0.1" ! sin 10! ! 0

f ( 1
4 ) ! sin 4! ! 0f ( 1

3) ! sin 3! ! 0

f ( 1
2 ) ! sin 2! ! 0f !1" ! sin ! ! 0

x
f !x" ! sin!!#x"

lim
xl 0

sin
!

x

EXAMPLE 3v

0 x_1 1

y
sin x

xy=1

FIGURE 6 

lim
xl 0

sin x
x

! 1

x
sin xx ! !

x ! 0f !x" ! !sin x"#x

lim
xl 0

sin x
x

x

" 1.0 0.84147098
" 0.5 0.95885108
" 0.4 0.97354586
" 0.3 0.98506736
" 0.2 0.99334665
" 0.1 0.99833417
" 0.05 0.99958339
" 0.01 0.99998333
" 0.005 0.99999583
" 0.001 0.99999983

sin x
x

Computer Algebra Systems
Computer algebra systems (CAS) have
commands that compute limits. In order to
avoid the types of pitfalls demonstrated in
Examples 2, 4, and 5, they don’t find limits by
numerical experimentation. Instead, they use
more sophisticated techniques such as com-
puting infinite series. If you have access to a
CAS, use the limit command to compute the
limits in the examples of this section and to
check your answers in the exercises of this
chapter.
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SECTION 2.2 THE LIMIT OF A FUNCTION 91

The dashed lines near the -axis indicate that the values of oscillate between
1 and infinitely often as approaches 0. (See Exercise 45.) 

Since the values of do not approach a fixed number as approaches 0,

Find .

SOLUTION As before, we construct a table of values. From the first table in the margin it
appears that

But if we persevere with smaller values of , the second table suggests that

Later we will see that ; then it follows that the limit is 0.0001.

| Examples 4 and 5 illustrate some of the pitfalls in guessing the value of a limit. It is easy
to guess the wrong value if we use inappropriate values of , but it is difficult to know when
to stop calculating values. And, as the discussion after Example 2 shows, sometimes cal-
culators and computers give the wrong values. In the next section, however, we will de-
velop foolproof methods for calculating limits.

The Heaviside function is defined by

[This function is named after the electrical engineer Oliver Heaviside (1850–1925) and
can be used to describe an electric current that is switched on at time .] Its graph is
shown in Figure 8.

As approaches 0 from the left, approaches 0. As approaches 0 from the right,
approaches 1. There is no single number that approaches as approaches 0.

Therefore does not exist.

One-Sided Limits
We noticed in Example 6 that approaches 0 as approaches 0 from the left and 
approaches 1 as approaches 0 from the right. We indicate this situation symbolically by
writing

and    

The symbol “ ” indicates that we consider only values of that are less than 0. Like-
wise, “ ” indicates that we consider only values of that are greater than 0.

EXAMPLE 6v

EXAMPLE 5

tt l 0!

tt l 0"

lim
tl0!

H!t" ! 1lim
tl0"

H!t" ! 0

t
H!t"tH!t"

lim tl 0 H!t"
tH!t"H!t"

tH!t"t

t ! 0

H!t" ! #0
1

if t # 0
if t $ 0

H

x

lim xl 0 cos 5x ! 1

lim
xl 0
$x 3 !

cos 5x
10,000% ! 0.000100 !

1
10,000

x

lim
xl 0
$x 3 !

cos 5x
10,000% ! 0

lim
xl 0
$x 3 !

cos 5x
10,000%

lim
xl 0

sin
%

x
does not exist

xf !x"
x"1

sin!%&x"y

t

y

1

0

FIGURE 8 
The Heaviside function

x

0.005 0.00010009
0.001 0.00010000

x 3 !
cos 5x
10,000

x

1 1.000028
0.5 0.124920
0.1 0.001088
0.05 0.000222
0.01 0.000101

x 3 !
cos 5x
10,000
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92 CHAPTER 2 LIMITS AND DERIVATIVES

Definition We write

and say the left-hand limit of as approaches [or the limit of as 
approaches from the left] is equal to if we can make the values of arbi-
trarily close to L by taking x to be sufficiently close to a and x less than a.

Notice that Definition 2 differs from Definition 1 only in that we require to be less 
than . Similarly, if we require that be greater than , we get “the right-hand limit of

as approaches is equal to ” and we write

Thus the symbol “ ” means that we consider only . These definitions are illus-
trated in Figure 9.

By comparing Definition l with the definitions of one-sided limits, we see that the fol-
lowing is true.

if and only if   and  

The graph of a function is shown in Figure 10. Use it to state the values
(if they exist) of the following:

(a) (b) (c) 

(d) (e) (f ) 

SOLUTION From the graph we see that the values of approach 3 as approaches 2
from the left, but they approach 1 as approaches 2 from the right. Therefore

(a) and    (b) 

(c) Since the left and right limits are different, we conclude from that
does not exist.

The graph also shows that

(d) and    (e) lim
xl 5!

t!x" ! 2 lim
xl 5"

t!x" ! 2

3 limxl 2 t!x"

lim
xl 2!

t!x" ! 3 lim
xl 2"

t!x" ! 1

x
t!x" x

lim
xl 5!

t!x" lim
xl 5"

t!x" lim
xl 5

t!x"

lim
xl 2!

t!x" lim
xl 2"

t!x" lim
xl 2

t!x"

v EXAMPLE 7 t

3 lim
xla

f !x" ! L lim
xla!

f !x" ! L lim
xla"

f !x" ! L

0 x

y

L

xa0 x

y

ƒ L

x a

ƒ

x    a+x    a_
(a) lim  ƒ=L (b) lim  ƒ=LFIGURE 9 

x l a" x # a

lim
xla"

f !x" ! L

x a L
a x a

f !x"

x

a L f !x"
f !x" x a f !x" x

lim
xla!

f !x" ! L

2

FIGURE 10

y

0 x

y=©

1 2 3 4 5

1

3

4
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(f ) This time the left and right limits are the same and so, by , we have

Despite this fact, notice that 

Infinite Limits

Find if it exists.

SOLUTION As becomes close to 0, also becomes close to 0, and becomes very
large. (See the table in the margin.) In fact, it appears from the graph of the function

shown in Figure 11 that the values of can be made arbitrarily large by
taking close enough to 0. Thus the values of do not approach a number, so

does not exist.

To indicate the kind of behavior exhibited in Example 8, we use the notation

| This does not mean that we are regarding as a number. Nor does it mean that the limit 
exists. It simply expresses the particular way in which the limit does not exist: can be
made as large as we like by taking close enough to 0.

In general, we write symbolically

to indicate that the values of tend to become larger and larger (or “increase without
bound”) as becomes closer and closer to .

Definition Let be a function defined on both sides of , except possibly at
itself. Then

means that the values of can be made arbitrarily large (as large as we please)
by taking sufficiently close to , but not equal to a.

Another notation for is

as    

Again, the symbol is not a number, but the expression is often read as

“the limit of , as approaches , is infinity”

or “ becomes infinite as approaches ”

or “ increases without bound as approaches ”

This definition is illustrated graphically in Figure 12.

f !x" x a

f !x" x a

f !x" x a

! lim xl a f !x" ! !

f !x" l ! x l a

limxla f !x" ! !

x a
f !x"

lim
xl a

f !x" ! !

4 f a a

x a
f !x"

lim
xl a

f !x" ! !

x
1#x 2

!

lim
xl 0

1
x 2 ! !

lim xl 0 !1#x 2 "
x f !x"

f !x" ! 1#x 2 f !x"

x x 2 1#x 2

EXAMPLE 8 lim
xl 0

1
x 2

t!5" " 2.

lim
xl 5

t!x" ! 2

3

SECTION 2.2 THE LIMIT OF A FUNCTION 93

x

" 1 1
" 0.5 4
" 0.2 25
" 0.1 100
" 0.05 400
" 0.01 10,000
" 0.001 1,000,000

1
x2

FIGURE 11 

y=

0

y

x

1
≈

x    a

FIGURE 12
lim ƒ=`

x

y

x=a

y=ƒ

a0
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94 CHAPTER 2 LIMITS AND DERIVATIVES

A similar sort of limit, for functions that become large negative as gets close to , is
defined in Definition 5 and is illustrated in Figure 13.

Definition Let be defined on both sides of , except possibly at itself. Then

means that the values of can be made arbitrarily large negative by taking
sufficiently close to , but not equal to a.

The symbol can be read as “the limit of , as approaches , is
negative infinity” or “ decreases without bound as approaches .” As an example we
have

Similar definitions can be given for the one-sided infinite limits

remembering that “ ” means that we consider only values of that are less than ,
and similarly “ ” means that we consider only . Illustrations of these four cases
are given in Figure 14.

Definition The line is called a vertical asymptote of the curve 
if at least one of the following statements is true:

x a

lim
xla!

f !x" ! "#lim
xla"

f !x" ! "#lim
xla

f !x" ! "#

lim
xla!

f !x" ! #lim
xla"

f !x" ! #lim
xla

f !x" ! #

y ! f !x"x ! a6

(d) lim  ƒ=_`

a

y

0 x

x a+x a_
(c) lim  ƒ=_`

y

0 a x

(a) lim  ƒ=`

y

0 a x

x a_
(b) lim  ƒ=`

a

y

x

x a+

0

FIGURE 14

x $ ax l a!

axx l a"

lim
xla!

f !x" ! "#lim
xla"

f !x" ! "#

lim
xla!

f !x" ! #lim
xla"

f !x" ! #

lim
xl0
#"

1
x 2$ ! "#

axf !x"
axf !x"limxla f !x" ! "#

5

a
xf !x"

lim
xl a

f !x" ! "#

aaf

0 x

y

x=a

y=ƒ
a

FIGURE 13
lim ƒ=_`
x    a

When we say a number is “large negative,” we
mean that it is negative but its magnitude
(absolute value) is large.
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SECTION 2.2 THE LIMIT OF A FUNCTION 95

For instance, the -axis is a vertical asymptote of the curve because
. In Figure 14 the line is a vertical asymptote in each of the four

cases shown. In general, knowledge of vertical asymptotes is very useful in sketching graphs.

Find and .

SOLUTION If is close to 3 but larger than 3, then the denominator is a small posi-
tive number and is close to 6. So the quotient is a large positive number.
Thus, intuitively, we see that

Likewise, if is close to 3 but smaller than 3, then is a small negative number but
is still a positive number (close to 6). So is a numerically large negative

number. Thus

The graph of the curve is given in Figure 15. The line is a verti-
cal asymptote.

Find the vertical asymptotes of .

SOLUTION Because

there are potential vertical asymptotes where . In fact, since as
and as , whereas is positive when x is near

, we have
and    

This shows that the line is a vertical asymptote. Similar reasoning shows 
that the lines , where n is an integer, are all vertical asymptotes of

. The graph in Figure 16 confirms this.

Another example of a function whose graph has a vertical asymptote is the natural log-
arithmic function . From Figure 17 we see that

and so the line (the y-axis) is a vertical asymptote. In fact, the same is true for
provided that . (See Figures 11 and 12 in Section 1.6.)

EXAMPLE 9 lim
xl3!

2x
x " 3

lim
xl3"

2x
x " 3

limxl 0 !1"x 2 # ! # x ! a
y y ! 1"x 2

y ! loga x

EXAMPLE 10

a $ 1
x ! 0

lim
xl0!

ln x ! "#

y ! ln x

f !x# ! tan x
x ! !2n ! 1#%"2

x ! %"2

lim
xl!%"2#!

tan x ! "#lim
xl!%"2#"

tan x ! #

%"2
sin xx l !%"2#!cos x l 0"x l !%"2#"

cos x l 0!cos x ! 0

tan x !
sin x
cos x

f !x# ! tan x

x ! 3y ! 2x"!x " 3#

lim
xl3"

2x
x " 3

! "#

2x"!x " 3#2x
x " 3x

lim
xl3!

2x
x " 3

! #

2x"!x " 3#2x
x " 3x

FIGURE 15

5

2x
x-3y=

0 x

y

x=3

__ x

y

π0_π

1

π
2

3π
 2

π
2

3π
 2

FIGURE 16
y=tan x

FIGURE 17

x0

y

1

y=ln x

The y-axis is a vertical asymptote of
the natural logarithmic function.
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96 CHAPTER 2 LIMITS AND DERIVATIVES

1. Explain in your own words what is meant by the equation

Is it possible for this statement to be true and yet ?
Explain.

2. Explain what it means to say that

and    

In this situation is it possible that exists? 
Explain.

3. Explain the meaning of each of the following.
(a) (b)

4. Use the given graph of to state the value of each quantity, 
if it exists. If it does not exist, explain why.
(a) (b) (c)

(d) (e) (f )

5. For the function whose graph is given, state the value of each
quantity, if it exists. If it does not exist, explain why.
(a) (b) (c)

(d) (e)

6. For the function whose graph is given, state the value of each
quantity, if it exists. If it does not exist, explain why.
(a) (b) (c)lim

xl !3!
h!x" lim

xl !3"
h!x" lim

xl !3
h!x"

h

lim
xl 3"

f !x"lim
xl 3!

f !x"lim
xl 1

f !x"

f

f

lim
xl 4

f !x"f !2"

lim
xl 2

f !x"lim
xl 2"

f !x"lim
xl2!

f !x"

y

0 x2 4

4

2

y

0 x2 4

4

2

f !3"lim
xl 3

f !x"

f !4"

lim
xl 4"

f !x" ! !#lim
xl!3

f !x" ! #

limxl 1 f !x"

lim
xl 1"

f !x" ! 7lim
xl 1!

f !x" ! 3

f !2" ! 3

lim
xl 2

f !x" ! 5

(d) (e) (f )

(g) (h) (i)

( j) (k) (l)

7. For the function whose graph is given, state the value of each
quantity, if it exists. If it does not exist, explain why.
(a) (b) (c)

(d) (e) (f )

(g) (h)

8. For the function whose graph is shown, state the following.
(a) (b)

(c) (d)

(e) The equations of the vertical asymptotes.

x

y

0 2 5_3

lim
xl !3"

R!x"lim
xl !3!

R!x"

lim
xl 5

R!x"lim
xl2

R!x"
R

y

t2 4

4

2

lim
tl 4

t!t"t!2"

lim
tl 2

t!t"lim
tl 2"

t!t"lim
tl 2!

t!t"

lim
tl 0

t!t"lim
tl 0"

t!t"lim
tl 0!

t!t"

t

y

0 x2_2_4 4 6

lim
xl5!

h!x"lim
xl5"

h!x"h!2"

lim
xl 2

h!x"h!0"lim
xl 0

h!x"

lim
xl0"

h!x"lim
xl0!

h!x"h!!3"

2.2 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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SECTION 2.2 THE LIMIT OF A FUNCTION 97

9. For the function whose graph is shown, state the follow-
ing.
(a) (b) (c)

(d) (e)

(f ) The equations of the vertical asymptotes.

10. A patient receives a 150-mg injection of a drug every
4 hours. The graph shows the amount of the drug in the
blood stream after hours. Find

and    

and explain the significance of these one-sided limits.

11–12 Sketch the graph of the function and use it to determine
the values of for which exists.

11.

12.

; 13–14 Use the graph of the function to state the value of each
limit, if it exists. If it does not exist, explain why.
(a) (b) (c)

13. 14.f !x" !
1

1 ! e 1#x f !x" !
x 2 ! x

sx 3 ! x 2

lim
x l 0"

f !x" lim
x l 0!

f !x" lim
x l 0

f !x"

f

f !x" ! $1 ! sin x
cos x
sin x

if x # 0
if 0 $ x $ %

if x & %

f !x" ! $1 ! x
x 2

2 " x

if x # "1
if "1 $ x # 1
if x ' 1

limx l a f !x"a

4 8 12 16 t

f(t)

150

0

300

lim
tl 12!

f !t"lim
tl 12"

f !t"

t
f !t"

x

y

0 6_3_7

lim
x l 6!

f !x"lim
x l 6"

f !x"

lim
x l 0

f !x"lim
x l"3

f !x"lim
x l"7

f !x"

f 15–18 Sketch the graph of an example of a function that 
satisfies all of the given conditions.

15. ,  ,

16. ,  , ,

,  

17. , ,  ,

,  

18. ,  , ,

,  ,  

19–22 Guess the value of the limit (if it exists) by evaluating the
function at the given numbers (correct to six decimal places).

19. ,  

20. ,

21. ,  , , , , 

22. ,  

, , , , 

23–26 Use a table of values to estimate the value of the limit. 
If you have a graphing device, use it to confirm your result 
graphically.

23. 24.

25. 26.

; 27. (a) By graphing the function
and zooming in toward the point where the graph crosses
the -axis, estimate the value of .

(b) Check your answer in part (a) by evaluating for 
values of that approach 0.x

f !x"
lim x l 0 f !x"y

f !x" ! !cos 2x " cos x"#x 2

lim
x l 0

9 x " 5 x

x
lim
x l 1

x6 " 1
x10 " 1

lim
x l 0

tan 3x
tan 5x

lim
x l 0

sx ! 4 " 2
x

( 0.0001( 0.001( 0.01( 0.1h ! ( 0.5

lim
hl 0

!2 ! h"5 " 32
h

( 0.0001( 0.001( 0.01( 0.1t ! ( 0.5lim
tl 0

e5 t " 1
t

"2, "1.5, "1.1, "1.01, "1.001
x ! 0, "0.5, "0.9, "0.95, "0.99, "0.999,

lim
x l " 1

x 2 " 2x
x 2 " x " 2

1.9, 1.95, 1.99, 1.995, 1.999
x ! 2.5, 2.1, 2.05, 2.01, 2.005, 2.001,

lim
x l2

x 2 " 2x
x 2 " x " 2

f

f !4" ! 1f !0" ! 2lim
x l 4!

f !x" ! 0

lim
x l 4"

f !x" ! 3lim
x l 0!

f !x" ! 0lim
x l 0"

f !x" ! 2

f !"2" ! 1f !3" ! 3

lim
x l "2

f !x" ! 2lim
x l 3"

f !x" ! 2lim
x l 3!

f !x" ! 4

f !3" ! 1f !0" ! "1

lim
x l 3!

f !x" ! 2lim
x l 3"

f !x" ! "2lim
x l 0

f !x" ! 1

f !0" ! 1lim
x l 0!

f !x" ! 2lim
x l 0"

f !x" ! "1
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98 CHAPTER 2 LIMITS AND DERIVATIVES

; 28. (a) Estimate the value of

by graphing the function . State
your answer correct to two decimal places.

(b) Check your answer in part (a) by evaluating for 
values of that approach 0.

29–37 Determine the infinite limit.

29. 30.

31. 32.

33. 34.

35. 36.

37.

38. (a) Find the vertical asymptotes of the function

; (b) Confirm your answer to part (a) by graphing the function.

39. Determine and 

(a) by evaluating for values of that
approach 1 from the left and from the right,

(b) by reasoning as in Example 9, and
; (c) from a graph of .

; 40. (a) By graphing the function and zooming
in toward the point where the graph crosses the y-axis,
estimate the value of .

(b) Check your answer in part (a) by evaluating for 
values of x that approach 0.

41. (a) Estimate the value of the limit to five
decimal places. Does this number look familiar?

; (b) Illustrate part (a) by graphing the function .

; 42. (a) Graph the function for 
. Do you think the graph is an accurate 

representation of ?
(b) How would you get a graph that represents better?f

x
f !x"

f !x" ! !sin x"#!sin !x"

lim
xl 0

sin x
sin !x

f
0 " x " 5

f !x" ! e x # ln $ x $ 4 $
y ! !1 # x"1#x

lim xl 0 !1 # x"1#x

f !x"
lim xl 0 f !x"

f !x" ! !tan 4x"#x

f

xf !x" ! 1#!x 3 $ 1"

lim
xl1#

1
x 3 $ 1

lim
xl1$

1
x 3 $ 1

y !
x 2 # 1

3x $ 2x 2

lim
xl2#

x 2 $ 2x $ 8
x 2 $ 5x # 6

lim
xl 2$

x 2 $ 2x
x 2 $ 4x # 4

lim
xl 2!$

x csc x

lim
xl!$

cot xlim
xl3#

ln!x 2 $ 9"

lim
xl5$

e x

!x $ 5"3lim
xl1

2 $ x
!x $ 1"2

lim
xl$ 3$

x # 2
x # 3

lim
xl$ 3#

x # 2
x # 3

43. (a) Evaluate the function for 1,
0.8, 0.6, 0.4, 0.2, 0.1, and 0.05, and guess the value of

(b) Evaluate for ! 0.04, 0.02, 0.01, 0.005, 0.003, and
0.001. Guess again.

44. (a) Evaluate for , 0.5, 0.1, 0.05,
0.01, and 0.005.

(b) Guess the value of .

(c) Evaluate for successively smaller values of until
you finally reach a value of for . Are you still confi-
dent that your guess in part (b) is correct? Explain why
you eventually obtained 0 values. (In Section 4.4 a
method for evaluating the limit will be explained.)

; (d) Graph the function h in the viewing rectangle 
by . Then zoom in toward the point where the graph
crosses the y-axis to estimate the limit of as x
approaches 0. Continue to zoom in until you observe 
distortions in the graph of h. Compare with the results of
part (c).

; 45. Graph the function of Example 4 in the
viewing rectangle by . Then zoom in toward
the origin several times. Comment on the behavior of this
function.

46. In the theory of relativity, the mass of a particle with 
velocity is

where is the mass of the particle at rest and is the speed 
of light. What happens as ?

; 47. Use a graph to estimate the equations of all the vertical
asymptotes of the curve

Then find the exact equations of these asymptotes.

; 48. (a) Use numerical and graphical evidence to guess the value
of the limit

(b) How close to 1 does have to be to ensure that the func-
tion in part (a) is within a distance 0.5 of its limit?

lim
xl 0

%x 2 $
2x

1000&
f !x" x

f !x" ! x 2 $ !2x#1000" x !

h!x"0
xh!x"

lim
xl 0

tan x $ x
x 3

x ! 1h!x" ! !tan x $ x"#x 3

x

lim
xl 1

x3 $ 1
sx $ 1

y ! tan!2 sin x" $ ! " x " !

v l c$

cm0

m !
m0

s1 $ v2#c2

v

'$ 1, 1('$ 1, 1(
f !x" ! sin!!#x"

h!x"
'0, 1(

'$ 1, 1(
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SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS 99

In Section 2.2 we used calculators and graphs to guess the values of limits, but we saw that
such methods don’t always lead to the correct answer. In this section we use the following
properties of limits, called the Limit Laws, to calculate limits.

Limit Laws Suppose that is a constant and the limits

exist. Then

1.

2.

3.

4.

5.

These five laws can be stated verbally as follows:

Sum Law 1. The limit of a sum is the sum of the limits.

Difference Law 2. The limit of a difference is the difference of the limits.

Constant Multiple Law 3. The limit of a constant times a function is the constant times the limit of the 
function.

Product Law 4. The limit of a product is the product of the limits.

Quotient Law 5. The limit of a quotient is the quotient of the limits (provided that the limit of the
denominator is not 0).

It is easy to believe that these properties are true. For instance, if is close to and
is close to , it is reasonable to conclude that is close to . This gives

us an intuitive basis for believing that Law 1 is true. In Section 2.4 we give a precise defi-
nition of a limit and use it to prove this law. The proofs of the remaining laws are given in
Appendix F.

Use the Limit Laws and the graphs of and t in Figure 1 to evaluate the fol-
lowing limits, if they exist.

(a) (b) (c) 

SOLUTION
(a) From the graphs of and t we see that

EXAMPLE 1

lim
x l !2

t!x" ! !1andlim
x l !2

f !x" ! 1

f

lim
x l 2

f !x"
t!x"

lim
x l 1

# f !x"t!x"$lim
x l !2

# f !x" " 5t!x"$

f

L " Mf !x" " t!x"Mt!x"
Lf !x"

lim
x l a

f !x"
t!x"

!
lim
x l a

f !x"

lim
x l a

t!x"
if lim

x l a
t!x" " 0

lim
x l a

# f !x" t!x"$ ! lim
x l a

f !x" ! lim
x l a

t!x"

lim
x l a

#cf !x"$ ! c lim
x l a

f !x"

lim
x l a

# f !x" ! t!x"$ ! lim
x l a

f !x" ! lim
x l a

t!x"

lim
x l a

# f !x" " t!x"$ ! lim
x l a

f !x" " lim
x l a

t!x"

lim
x l a

t!x"andlim
x l a

f !x"

c

2.3 Calculating Limits Using the Limit Laws

FIGURE 1 

x

y

0

f

g
1

1
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100 CHAPTER 2 LIMITS AND DERIVATIVES

Therefore we have

(by Law 1)

(by Law 3)

(b) We see that . But does not exist because the left and
right limits are different:

So we can’t use Law 4 for the desired limit. But we can use Law 4 for the one-sided
limits:

The left and right limits aren’t equal, so does not exist.
(c) The graphs show that

Because the limit of the denominator is 0, we can’t use Law 5. The given limit does not
exist because the denominator approaches 0 while the numerator approaches a nonzero
number.

If we use the Product Law repeatedly with , we obtain the following law.

Power Law 6. where is a positive integer

In applying these six limit laws, we need to use two special limits: 

7. 8.

These limits are obvious from an intuitive point of view (state them in words or draw
graphs of and ), but proofs based on the precise definition are requested in the
exercises for Section 2.4.

If we now put in Law 6 and use Law 8, we get another useful special limit.

9. where is a positive integer

A similar limit holds for roots as follows. (For square roots the proof is outlined in Exer-
cise 37 in Section 2.4.)

10. where is a positive integer

(If is even, we assume that .)a ! 0n

nlim
xla

sn x ! sn a

nlim
xl a

xn ! an

f !x" ! x

y ! xy ! c

lim
xla

x ! alim
xla

c ! c

nlim
xla

# f !x"$n ! [ lim
xla

f !x"]n
t!x" ! f !x"

lim
xl 2

t!x" ! 0andlim
xl 2

f !x" % 1.4

lim xl 1 # f !x"t!x"$

lim
xl 1"

# f !x"t!x"$ ! 2 ! !#1" ! #2lim
xl 1#

# f !x"t!x"$ ! 2 ! !#2" ! #4

lim
xl 1"

t!x" ! #1lim
xl 1#

t!x" ! #2

lim xl 1 t!x"lim xl 1 f !x" ! 2

! 1 " 5!#1" ! #4

! lim
xl #2

f !x" " 5 lim
xl #2

t!x"

lim
xl #2

# f !x" " 5t!x"$ ! lim
xl #2

f !x" " lim
xl #2

#5t!x"$
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SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS 101

More generally, we have the following law, which is proved in Section 2.5 as a conse-
quence of Law 10.

Root Law 11. where is a positive integer

[If is even, we assume that ]

Evaluate the following limits and justify each step.

(a) (b) 

SOLUTION

(a) (by Laws 2 and 1)

(by 3)

(by 9, 8, and 7)

(b) We start by using Law 5, but its use is fully justified only at the final stage when we
see that the limits of the numerator and denominator exist and the limit of the denomina-
tor is not 0.

(by Law 5)

(by 1, 2, and 3)

(by 9, 8, and 7)

NOTE If we let , then . In other words, we would have
gotten the correct answer in Example 2(a) by substituting 5 for x. Similarly, direct substi-
tution provides the correct answer in part (b). The functions in Example 2 are a polynomial
and a rational function, respectively, and similar use of the Limit Laws proves that direct
substitution always works for such functions (see Exercises 55 and 56). We state this fact
as follows.

Direct Substitution Property If is a polynomial or a rational function and is in
the domain of , then

EXAMPLE 2

lim
xla

f !x" ! f !a"

f
af

f !5" ! 39f !x" ! 2x 2 ! 3x " 4

! !
1

11

!
!!2"3 " 2!!2"2 ! 1

5 ! 3!!2"

!
lim
xl!2

x 3 " 2 lim
xl!2

x 2 ! lim
xl!2

1

lim
xl!2

5 ! 3 lim
xl!2

x

lim
xl!2

x 3 " 2x 2 ! 1
5 ! 3x

!
lim
xl!2

!x 3 " 2x 2 ! 1"

lim
xl!2

!5 ! 3x"

! 39

! 2!52 " ! 3!5" " 4

! 2 lim
xl5

x 2 ! 3 lim
xl5

x " lim
xl5

4

lim
xl5

!2x 2 ! 3x " 4" ! lim
xl5

!2x 2 " ! lim
xl5

!3x" " lim
xl5

4

lim
xl!2

x 3 " 2x 2 ! 1
5 ! 3x

lim
xl5

!2x 2 ! 3x " 4"

lim
xla

f !x" # 0.n

nlim
xla

sn f !x) ! sn lim
xla

f !x)

Newton and Limits

Isaac Newton was born on Christmas Day in
1642, the year of Galileo’s death. When he
entered Cambridge University in 1661 Newton
didn’t know much mathematics, but he learned
quickly by reading Euclid and Descartes and 
by attending the lectures of Isaac Barrow. Cam-
bridge was closed because of the plague in
1665 and 1666, and Newton returned home to
reflect on what he had learned. Those two years
were amazingly productive for at that time he
made four of his major discoveries: (1) his repre-
senta tion of functions as sums of infinite series,
including the binomial theorem; (2) his work on
differential and integral calculus; (3) his laws 
of motion and law of universal gravitation; and
(4) his prism experi ments on the nature of light
and color. Because of a fear of controversy and
criticism, he was reluctant to publish his dis-
coveries and it wasn’t until 1687, at the urging
of the astronomer Halley, that Newton published
Principia Mathematica. In this work, the great-
est scientific treatise ever written, Newton set
forth his version of calculus and used it to
investigate mechanics, fluid dynamics, and
wave motion, and to explain the motion of 
planets and comets.

The beginnings of calculus are found in 
the calculations of areas and volumes by
ancient Greek scholars such as Eudoxus and
Archimedes. Although aspects of the idea 
of a limit are implicit in their “method of
exhaustion,” Eudoxus and Archimedes never
explicitly formulated the concept of a limit. Like-
wise, mathematicians such as Cavalieri, Fermat,
and Barrow, the immediate precursors of New-
ton in the development of calculus, did not actu-
ally use limits. It was Isaac Newton who was
the first to talk explicitly about limits. He
explained that the main idea behind limits is
that quantities “approach nearer than by any
given difference.” Newton stated that the limit
was the basic concept in calculus, but it was
left to later mathe maticians like Cauchy to clar-
ify his ideas about limits.
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102 CHAPTER 2 LIMITS AND DERIVATIVES

Functions with the Direct Substitution Property are called continuous at a and will be
studied in Section 2.5. However, not all limits can be evaluated by direct substitution, as the
following examples show.

Find .

SOLUTION Let . We can’t find the limit by substituting
because isn’t defined. Nor can we apply the Quotient Law, because the limit of the
denominator is 0. Instead, we need to do some preliminary algebra. We factor the numer-
ator as a difference of squares:

The numerator and denominator have a common factor of . When we take the limit
as approaches 1, we have and so . Therefore we can cancel the com-
mon factor and compute the limit as follows:

The limit in this example arose in Section 2.1 when we were trying to find the tangent to
the parabola at the point .

NOTE In Example 3 we were able to compute the limit by replacing the given function
by a simpler function, , with the same limit. This is

valid because except when , and in computing a limit as approaches 1
we don’t consider what happens when is actually equal to 1. In general, we have the fol-
lowing useful fact.

, provided the limits exist.

Find where 

SOLUTION Here is defined at and , but the value of a limit as
approaches 1 does not depend on the value of the function at 1. Since for

, we have

Note that the values of the functions in Examples 3 and 4 are identical except when
(see Figure 2) and so they have the same limit as approaches 1.xx ! 1

EXAMPLE 4

lim
x l 1

t!x" ! lim
x l 1

!x ! 1" ! 2
x " 1

t!x" ! x ! 1
xt!1" ! "x ! 1t

t!x" ! #x ! 1
"

if x " 1
if x ! 1

lim
x l1

t!x"

If f !x" ! t!x" when x " a, then lim
x l a

f !x" ! lim
x l a

t!x"

x
xx ! 1f !x" ! t!x"

t!x" ! x ! 1f !x" ! !x 2 # 1"$!x # 1"

EXAMPLE 3

!1, 1"y ! x 2

! 1 ! 1 ! 2

! lim
x l 1

!x ! 1"

lim
x l 1

x 2 # 1
x # 1

! lim
x l 1

!x # 1"!x ! 1"
x # 1

x # 1 " 0x " 1x
x # 1

x 2 # 1
x # 1

!
!x # 1"!x ! 1"

x # 1

f !1"
x ! 1f !x" ! !x 2 # 1"$!x # 1"

lim
x l 1

x 2 # 1
x # 1

y=©

1 2 3

1

x

y

0

2

3

y=ƒ

1 2 3

1

x

y

0

2

3

FIGURE 2 
The graphs of the functions f (from
Example 3) and g (from Example 4)
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SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS 103

Evaluate .

SOLUTION If we define 

then, as in Example 3, we can’t compute by letting since is
undefined. But if we simplify algebraically, we find that

(Recall that we consider only when letting approach 0.) Thus

Find .

SOLUTION We can’t apply the Quotient Law immediately, since the limit of the denomi-
nator is 0. Here the preliminary algebra consists of rationalizing the numerator:

This calculation confirms the guess that we made in Example 2 in Section 2.2.

Some limits are best calculated by first finding the left- and right-hand limits. The fol-
lowing theorem is a reminder of what we discovered in Section 2.2. It says that a two-sided
limit exists if and only if both of the one-sided limits exist and are equal.

Theorem if and only if    

When computing one-sided limits, we use the fact that the Limit Laws also hold for one-
sided limits.

!
1

slim
tl 0

!t 2 ! 9" ! 3

! lim
tl 0

t 2

t 2(st 2 ! 9 ! 3)

EXAMPLE 6

EXAMPLE 5v

lim
xla"

f !x" ! L ! lim
xla!

f !x"lim
xl a

f !x" ! L1

!
1

3 ! 3
!

1
6

! lim
tl 0

1
st 2 ! 9 ! 3

! lim
tl 0

!t 2 ! 9" " 9
t 2(st 2 ! 9 ! 3)

lim
tl 0

st 2 ! 9 " 3
t 2 ! lim

tl 0

st 2 ! 9 " 3
t 2 !

st 2 ! 9 ! 3
st 2 ! 9 ! 3

lim
tl 0

st 2 ! 9 " 3
t 2

lim
hl 0

!3 ! h"2 " 9
h

! lim
hl 0

!6 ! h" ! 6

hh " 0

F!h" !
!9 ! 6h ! h 2 " " 9

h
!

6h ! h 2

h
! 6 ! h

F!h"
F!0"h ! 0lim hl 0 F!h"

F!h" !
!3 ! h"2 " 9

h

lim
hl 0

!3 ! h"2 " 9
h
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104 CHAPTER 2 LIMITS AND DERIVATIVES

Show that .

SOLUTION Recall that

Since for , we have

For we have and so 

Therefore, by Theorem 1, 

Prove that does not exist.

SOLUTION

Since the right- and left-hand limits are different, it follows from Theorem 1 that
does not exist. The graph of the function is shown in

Figure 4 and supports the one-sided limits that we found.

If

determine whether exists.

SOLUTION Since for , we have

Since for , we have

The right- and left-hand limits are equal. Thus the limit exists and

The graph of is shown in Figure 5.

EXAMPLE 9

f

lim
xl 4

f !x" ! 0

lim
xl4!

f !x" ! lim
xl4!

!8 ! 2x" ! 8 ! 2 ! 4 ! 0

x " 4f !x" ! 8 ! 2x

lim
xl4#

f !x" ! lim
xl4#

sx ! 4 ! s4 ! 4 ! 0

x $ 4f !x" ! sx ! 4

lim xl 4 f !x"

f !x" ! #sx ! 4
8 ! 2x

if x $ 4
if x " 4

EXAMPLE 8v

EXAMPLE 7

$ x $ ! #x!x
if x % 0
if x " 0

lim
xl 0 $ x $ ! 0

f !x" ! $ x $%xlim xl 0 $ x $%x

lim
xl0!

$ x $
x

! lim
xl0!

!x
x

! lim
xl0!

!!1" ! !1

lim
xl0#

$ x $
x

! lim
xl0#

x
x

! lim
xl0#

1 ! 1

lim
xl 0

$ x $
x

lim
xl 0 $ x $ ! 0

lim
xl0! $ x $ ! lim

xl0!
!!x" ! 0

$ x $ ! !xx " 0

lim
xl0# $ x $ ! lim

xl0#
x ! 0

x $ 0$ x $ ! x
The result of Example 7 looks plausible 
from Figure 3.

FIGURE 3 

y

x0

y=|x|

1

_1
x

y

0

y= |x|
x

FIGURE 4 

4 x

y

0

FIGURE 5 

It is shown in Example 3 in 
Section 2.4 that .lim xl 0# sx ! 0
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SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS 105

The greatest integer function is defined by the largest integer 
that is less than or equal to . (For instance, , , , , 

) Show that does not exist.

SOLUTION The graph of the greatest integer function is shown in Figure 6. Since 
for , we have

Since for , we have

Because these one-sided limits are not equal, does not exist by Theorem 1.

The next two theorems give two additional properties of limits. Their proofs can be
found in Appendix F.

Theorem If when is near (except possibly at ) and the limits
of and both exist as approaches , then

The Squeeze Theorem If when is near (except 
possibly at ) and

then

The Squeeze Theorem, which is sometimes called the Sandwich Theorem or the Pinch-
ing Theorem, is illustrated by Figure 7. It says that if is squeezed between and

near , and if and have the same limit at , then is forced to have the same
limit at .

Show that .

SOLUTION First note that we cannot use

|

because does not exist (see Example 4 in Section 2.2).
Instead we apply the Squeeze Theorem, and so we need to find a function smaller

than and a function bigger than such that both and

EXAMPLE 10

lim xl3 !x"!!1
2 " ! !1.

!s2 " ! 1!" " ! 3!4.8" ! 4!4" ! 4x
!x" !

lim xl3 !x"

lim
xl3!

!x" ! lim
xl3!

2 ! 2

2 # x $ 3!x" ! 2

lim
xl3%

!x" ! lim
xl3%

3 ! 3

3 # x $ 4
!x" ! 3

EXAMPLE 11v

h#x$f #x$tht#x$ ! x 2 sin#1%x$
f

lim xl 0 sin#1%x$

lim
xl 0

x 2 sin
1
x

! lim
xl 0

x 2 ! lim
xl 0

sin
1
x

lim
xl 0

x 2 sin
1
x

! 0

aL
taLhfah#x$

f #x$t#x$

lim
xl a

t#x$ ! L

lim
xl a

f #x$ ! lim
xl a

h#x$ ! L

a
axf #x$ # t#x$ # h#x$3

lim
xl a

f #x$ # lim
xl a

t#x$

axtf
aaxf #x$ # t#x$2

Other notations for are and . The
greatest integer function is sometimes called
the floor function.

⎣x⎦&x'!x "

y=[ x]

1 2 3

1
2
3
4

4 5 x

y

0

FIGURE 6 
Greatest integer function

0 x

y

a

L

f

g
h

FIGURE 7 
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106 CHAPTER 2 LIMITS AND DERIVATIVES

approach 0. To do this we use our knowledge of the sine function. Because the sine of
any number lies between and 1, we can write

Any inequality remains true when multiplied by a positive number. We know that
for all and so, multiplying each side of the inequalities in by , we get

as illustrated by Figure 8. We know that

Taking , , and in the Squeeze Theorem, we
obtain

4

!1

!1 " sin
1
x

" 14

lim
xl 0

x 2 sin
1
x

! 0

h!x" ! x 2t!x" ! x 2 sin!1#x"f !x" ! !x 2

lim
xl 0

!!x 2 " ! 0andlim
xl 0

x 2 ! 0

!x 2 " x 2 sin
1
x

" x 2

x 2x
x 2 # 0

y=≈

y=_≈

0 x

y

FIGURE 8
y=≈ sin(1/x)

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

1. Given that

find the limits that exist. If the limit does not exist, explain why.

(a) (b) 

(c) (d) 

(e) (f ) 

2. The graphs of and t are given. Use them to evaluate each
limit, if it exists. If the limit does not exist, explain why.

(a) (b)

(c) (d)

(e) (f )lim
xl2

$x 3 f !x"% lim
xl1

s3 $ f !x"

lim
xl!1

f !x"
t!x"

lim
xl0

$f !x"t!x"%

lim
xl1

$f !x" $ t!x"%lim
xl2

$f !x" $ t!x"%

x1

y

y=ƒ
1

0 x

y

1

y=©
1

f

lim
xl 2

t!x"h!x"
f !x"

lim
xl2

t!x"
h!x"

lim
xl 2

3f !x"
t!x"

lim
xl 2

sf !x"

lim
xl 2

$t!x"%3lim
xl 2

$f !x" $ 5t!x"%

lim
xl 2

h!x" ! 0lim
xl 2

t!x" ! !2lim
xl 2

f !x" ! 4

3–9 Evaluate the limit and justify each step by indicating the
appropriate Limit Law(s).

3.

4.

5. 6.

7. 8.

9.

10. (a) What is wrong with the following equation?

(b) In view of part (a), explain why the equation

is correct.

lim
xl2

x 2 $ x ! 6
x ! 2

! lim
xl2

!x $ 3"

x 2 $ x ! 6
x ! 2

! x $ 3

lim
xl 2 &2x 2 $ 1

3x ! 2

lim
tl 2
' t 2 ! 2
t 3 ! 3t $ 5(2

lim
xl 8

(1 $ s3 x )!2 ! 6x 2 $ x 3"

lim
tl !2

t 4 ! 2
2t 2 ! 3t $ 2

lim
xl3

!5x 3 ! 3x 2 $ x ! 6"

lim
ul!2

su 4 $ 3u $ 6

lim
xl !1

!x 4 ! 3x"!x 2 $ 5x $ 3"

2.3 Exercises
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SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS 107

11–32 Evaluate the limit, if it exists.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

; 33. (a) Estimate the value of

by graphing the function .
(b) Make a table of values of for x close to 0 and guess

the value of the limit.
(c) Use the Limit Laws to prove that your guess is correct.

; 34. (a) Use a graph of

to estimate the value of to two decimal
places.

(b) Use a table of values of to estimate the limit to four
decimal places.

(c) Use the Limit Laws to find the exact value of the limit.

; 35. Use the Squeeze Theorem to show that
. Illustrate by graphing the

functions , and on
the same screen.

lim
xl 4

x 2 ! 4x
x 2 ! 3x ! 4

lim
xl5

x 2 ! 6x " 5
x ! 5

h!x" ! x 2f !x" ! !x 2, t!x" ! x 2 cos 20#x
limxl 0 !x 2 cos 20#x" ! 0

f !x"

limxl 0 f !x"

f !x" !
s3 " x ! s3

x

f !x"
f !x" ! x#(s1 " 3x ! 1)

lim
xl0

x
s1 " 3x ! 1

lim
hl 0

1
!x " h"2 !

1
x 2

h
lim
hl 0

!x " h"3 ! x 3

h

lim
xl!4

sx 2 " 9 ! 5
x " 4

lim
tl 0
$ 1
ts1 " t

!
1
t %

lim
hl 0

!3 " h"!1 ! 3!1

h
lim
xl 16

4 ! sx
16x ! x 2

lim
tl 0
$1
t

!
1

t 2 " t%lim
tl 0

s1 " t ! s1 ! t
t

lim
xl!1

x 2 " 2x " 1
x 4 ! 1

lim
xl!4

1
4

"
1
x

4 " x

lim
ul 2

s4u " 1 ! 3
u ! 2

lim
hl 0

s9 " h ! 3
h

lim
tl 1

t 4 ! 1
t 3 ! 1

lim
xl!2

x " 2
x 3 " 8

lim
hl0

!2 " h"3 ! 8
h

lim
hl0

!!5 " h"2 ! 25
h

lim
xl!1

2x 2 " 3x " 1
x 2 ! 2x ! 3

lim
tl!3

t 2 ! 9
2t 2 " 7t " 3

lim
xl!1

x 2 ! 4x
x 2 ! 3x ! 4

lim
xl5

x 2 ! 5x " 6
x ! 5

; 36. Use the Squeeze Theorem to show that

Illustrate by graphing the functions and (in the
notation of the Squeeze Theorem) on the same screen.

37. If for , find .

38. If for all , evaluate .

39. Prove that 

40. Prove that .

41–46 Find the limit, if it exists. If the limit does not exist,
explain why.

41. 42.

43. 44.

45. 46.

47. The signum (or sign) function, denoted by sgn, is defined by 

(a) Sketch the graph of this function.
(b) Find each of the following limits or explain why it does

not exist.
(i) (ii)

(iii) (iv)

48. Let

(a) Find and 
(b) Does exist?
(c) Sketch the graph of .

49. Let .

(a) Find

(i) (ii) 

(b) Does exist?
(c) Sketch the graph of .t

limxl 2 t!x"

lim
xl2"

t!x" lim
xl2!

t!x"

t!x" !
x 2 " x ! 6

& x ! 2 &

f
lim xl1 f !x"
lim xl1! f !x" lim xl1" f !x".

f !x" ! 'x 2 " 1
!x ! 2"2

if x $ 1
if x % 1

lim
xl 0

sgn x lim
xl 0 & sgn x &

lim
xl0"

sgn x lim
xl0!

sgn x

sgn x ! '!1
0
1

if x $ 0
if x ! 0
if x & 0

lim
xl0! $1

x
!

1
& x & % lim

xl0" $ 1
x

!
1

& x & %
lim

xl0.5!

2x ! 1
& 2x 3 ! x 2 & lim

xl!2

2 ! & x &
2 " x

lim
xl 3

(2x " & x ! 3 &) lim
xl!6

2x " 12
& x " 6 &

lim
xl0"

sx esin!##x" ! 0

lim
xl0

x 4 cos
2
x

! 0.

2x ' t!x" ' x 4 ! x 2 " 2 x lim
xl 1

t!x"

4x ! 9 ' f !x" ' x 2 ! 4x " 7 x % 0 lim
xl 4

f !x"

f, t, h

lim
xl0

sx 3 " x 2 sin
#

x
! 0
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108 CHAPTER 2 LIMITS AND DERIVATIVES

50. Let

(a) Evaluate each of the following, if it exists.
(i) (ii) (iii)

(iv) (v) (vi)

(b) Sketch the graph of .

51. (a) If the symbol denotes the greatest integer function
defined in Example 10, evaluate
(i) (ii) (iii) 

(b) If n is an integer, evaluate
(i) (ii) 

(c) For what values of does exist?

52. Let , .
(a) Sketch the graph of 
(b) Evaluate each limit, if it exists.

(i) (ii)

(iii) (iv)

(c) For what values of does exist?

53. If , show that exists but is not
equal to .

54. In the theory of relativity, the Lorentz contraction formula

expresses the length L of an object as a function of its velocity
with respect to an observer, where is the length of the

object at rest and c is the speed of light. Find and
interpret the result. Why is a left-hand limit necessary?

55. If is a polynomial, show that .

56. If r is a rational function, use Exercise 55 to show that
for every number a in the domain of r.limxl a r!x" ! r!a"

p lim xl a p!x" ! p!a"

limv lc!L
v L0

L ! L0 s1 ! v 2#c 2

f !2"
f !x" ! $x% " $!x% limxl 2 f !x"

a limxl a f !x"

lim
xl!##2""

f !x" lim
xl##2

f !x"

lim
xl 0

f !x" lim
xl!##2"!

f !x"

f.
f !x" ! $cos x% !# $ x $ #

a limxl a $x%

lim
xln!

$x% lim
xl n"

$x%

lim
xl!2"

$x% lim
xl!2

$x% lim
xl!2.4

$x%

$ %

t
lim
xl2!

t!x" lim
xl 2"

t!x" lim
xl 2

t!x"

lim
xl1!

t!x" lim
xl 1

t!x" t!1"

t!x" !

x
3
2 ! x 2

x ! 3

if x % 1
if x ! 1
if 1 % x $ 2
if x & 2

57. If , find .

58. If , find the following limits.

(a) (b)

59. If

prove that .

60. Show by means of an example that may
exist even though neither nor exists.

61. Show by means of an example that may
exist even though neither nor exists.

62. Evaluate .

63. Is there a number a such that

exists? If so, find the value of a and the value of the limit.

64. The figure shows a fixed circle with equation
and a shrinking circle with radius and

center the origin. P is the point , Q is the upper point of
intersection of the two circles, and R is the point of intersection
of the line PQ and the -axis. What happens to R as shrinks,
that is, as ?

x

y

0

P Q
C™

C¡
R

r l 0"
C2x

!0, r"
rC2!x ! 1"2 " y 2 ! 1

C1

lim
xl!2

3x 2 " ax " a " 3
x 2 " x ! 2

lim
xl 2

s6 ! x ! 2
s3 ! x ! 1

limxla t!x"limxla f !x"
limxla &f !x" t!x"'

limxla t!x"limxla f !x"
limxla &f !x" " t!x"'

lim xl 0 f !x" ! 0

f !x" ! (x 2

0
if x is rational
if x is irrational

lim
xl 0

f !x"
x

lim
xl 0

f !x"

lim
xl 0

f !x"
x 2 ! 5

lim
xl 1

f !x"lim
xl 1

f !x" ! 8
x ! 1

! 10

The intuitive definition of a limit given in Section 2.2 is inadequate for some purposes
because such phrases as “ is close to 2” and “ gets closer and closer to L” are vague.
In order to be able to prove conclusively that

we must make the definition of a limit precise.

lim
xl 0

sin x
x

! 1orlim
xl 0

)x 3 "
cos 5x
10,000* ! 0.0001

f !x"x

2.4 The Precise Definition of a Limit
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SECTION 2.4 THE PRECISE DEFINITION OF A L IMIT 109

To motivate the precise definition of a limit, let’s consider the function

Intuitively, it is clear that when is close to 3 but , then is close to 5, and so
.

To obtain more detailed information about how varies when is close to 3, we ask
the following question:

How close to 3 does have to be so that differs from 5 by less than 0.l?

The distance from to 3 is and the distance from to 5 is , so our
problem is to find a number such that

If , then , so an equivalent formulation of our problem is to find a num-
ber such that

Notice that if , then

that is,

Thus an answer to the problem is given by ; that is, if is within a distance of
0.05 from 3, then will be within a distance of 0.1 from 5.

If we change the number 0.l in our problem to the smaller number 0.01, then by using
the same method we find that will differ from 5 by less than 0.01 provided that dif-
fers from 3 by less than (0.01)!2 ! 0.005:

Similarly,

The numbers and that we have considered are error tolerances that we
might allow. For 5 to be the precise limit of as approaches 3, we must not only be
able to bring the difference between and 5 below each of these three numbers; we
must be able to bring it below any positive number. And, by the same reasoning, we can! If
we write (the Greek letter epsilon) for an arbitrary positive number, then we find as 
before that

This is a precise way of saying that is close to 5 when is close to 3 because says
that we can make the values of within an arbitrary distance from 5 by taking the val-
ues of within a distance from 3 (but ).

1

1

x " 3!!2x
!f "x#

xf "x#

0 " $ x # 3 $ " $ !
!

2
if$ f "x# # 5 $ " !

!

f "x#
xf "x#

0.0010.1, 0.01,

0 " $ x # 3 $ " 0.0005if$ f "x# # 5 $ " 0.001

0 " $ x # 3 $ " 0.005if$ f "x# # 5 $ " 0.01

xf "x#

f "x#
x$ ! 0.05

0 " $ x # 3 $ " 0.05if$ f "x# # 5 $ " 0.1

$ f "x# # 5 $ ! $ "2x # 1# # 5 $ ! $ 2x # 6 $ ! 2$ x # 3 $ " 2"0.05# ! 0.1

0 " $ x # 3 $ " "0.1#!2 ! 0.05

0 " $ x # 3 $ " $if$ f "x# # 5 $ " 0.1

$
x " 3$ x # 3 $ % 0

but x " 3$ x # 3 $ " $if$ f "x# # 5 $ " 0.1

$
$ f "x# # 5 $f "x#$ x # 3 $x

f "x#x

xf "x#
lim x l3 f "x# ! 5

f "x#" 3xx

f "x# ! %2x # 1
6

if x " 3
if x ! 3

It is traditional to use the Greek letter 
(delta) in this situation.

$
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110 CHAPTER 2 LIMITS AND DERIVATIVES

Note that can be rewritten as follows:

then    

and this is illustrated in Figure 1. By taking the values of ( ) to lie in the interval
we can make the values of lie in the interval .

Using as a model, we give a precise definition of a limit.

Definition Let be a function defined on some open interval that contains the
number , except possibly at itself. Then we say that the limit of as
approaches is L, and we write

if for every number there is a number such that

then    

Since is the distance from to and is the distance from to ,
and since can be arbitrarily small, the definition of a limit can be expressed in words 
as follows:

means that the distance between and can be made arbitrarily small 
by taking the distance from to sufficiently small (but not 0).

Alternatively,

means that the values of can be made as close as we please to 
by taking close enough to (but not equal to ).

We can also reformulate Definition 2 in terms of intervals by observing that the in-
equality is equivalent to , which in turn can be written 
as . Also is true if and only if , that is, 

. Similarly, the inequality is equivalent to the pair of inequalities
. Therefore, in terms of intervals, Definition 2 can be stated 

as follows:

means that for every (no matter how small is) we can find
such that if lies in the open interval and , then lies in 

the open interval 

We interpret this statement geometrically by representing a function by an arrow diagram
as in Figure 2, where maps a subset of onto another subset of .

The definition of limit says that if any small interval is given around , then
we can find an interval around such that maps all the points in

(except possibly ) into the interval . (See Figure 3.)

1

1

!L ! ", L # ""a!a ! $, a # $"
fa!a ! $, a # $"

L!L ! ", L # ""

x a f(a) ƒ

f

FIGURE 2 

2

!!f

!L ! ", L # "".
f !x"x ! a!a ! $, a # $"x$ % 0

"" % 0lim xl a f !x" " L

L # "&f !x"L ! " &
# f !x" ! L # & "x ! a

x ! a ! 00 & # x ! a #a ! $ & x & a # $
!$ & x ! a & $# x ! a # & $

aax
Lf !x"lim xl a f !x" " L

ax
Lf !x"lim xl a f !x" " L

"
Lf !x"# f !x" ! L #ax# x ! a #

# f !x" ! L # & "0 & # x ! a # & $if

$ % 0" % 0

lim
xl a

f !x" " L

a
xf !x"aa

f

!5 ! ", 5 # ""f !x"!3 ! $, 3 # $"
! 3x

5 ! " & f !x" & 5 # "!x ! 3"3 ! $ & x & 3 # $if

FIGURE 1 

0 x

y

5+∑
5

5-∑

3
3+∂3-∂

ƒ
is in
here

when x is in here
(x≠3)
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SECTION 2.4 THE PRECISE DEFINITION OF A L IMIT 111

Another geometric interpretation of limits can be given in terms of the graph of a func-
tion. If is given, then we draw the horizontal lines and and
the graph of . (See Figure 4.) If , then we can find a number such
that if we restrict to lie in the interval and take , then the curve

lies between the lines and . (See Figure 5.) You can see
that if such a has been found, then any smaller will also work.

It is important to realize that the process illustrated in Figures 4 and 5 must work for
every positive number , no matter how small it is chosen. Figure 6 shows that if a smaller

is chosen, then a smaller may be required.

Use a graph to find a number such that

if    then    

In other words, find a number that corresponds to in the definition of a limit
for the function with and .

SOLUTION A graph of is shown in Figure 7; we are interested in the region near the
point . Notice that we can rewrite the inequality

as

So we need to determine the values of for which the curve lies
between the horizontal lines and . Therefore we graph the curves

, , and near the point in Figure 8. Then we use
the cursor to estimate that the -coordinate of the point of intersection of the line
and the curve is about . Similarly, intersects
the line when . So, rounding to be safe, we can say that

if    1.8 ! x 3 " 5x # 6 ! 2.2then0.92 ! x ! 1.12

x ! 1.124y ! 1.8
y ! x 3 " 5x # 60.911y ! x 3 " 5x # 6

y ! 2.2x
"1, 2#y ! 2.2y ! 1.8y ! x 3 " 5x # 6

y ! 2.2y ! 1.8
y ! x 3 " 5x # 6x

EXAMPLE 1

1.8 ! x 3 " 5x # 6 ! 2.2

$ "x 3 " 5x # 6#" 2 $ ! 0.2

"1, 2#
f

L ! 2a ! 1f"x#! x 3 " 5x # 6
$ ! 0.2%

$ "x 3 " 5x # 6#" 2 $ ! 0.2$ x " 1 $ ! %

%

%$
$

%%
y ! L # $y ! L " $y ! f"x#

x " a"a " %, a # %#x
% & 0lim xl a f"x#! Lf

y ! L " $y ! L # $$ & 0

FIGURE 3 a-∂ a

ƒ

a+∂

x
f

L-∑ L L+∑

FIGURE 7

FIGURE 8

15

_5

_3 3

y=˛-5x+6
y=2.2

y=1.8

(1, 2)

0.8 1.2

2.3

1.7
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112 CHAPTER 2 LIMITS AND DERIVATIVES

This interval is not symmetric about . The distance from to the
left endpoint is and the distance to the right endpoint is 0.12. We can
choose to be the smaller of these numbers, that is, . Then we can rewrite our
inequalities in terms of distances as follows:

if    

This just says that by keeping within 0.08 of 1, we are able to keep within 0.2 
of 2.

Although we chose , any smaller positive value of would also have
worked.

The graphical procedure in Example 1 gives an illustration of the definition for ,
but it does not prove that the limit is equal to 2. A proof has to provide a for every .

In proving limit statements it may be helpful to think of the definition of limit as a chal-
lenge. First it challenges you with a number . Then you must be able to produce a suitable
. You have to be able to do this for every , not just a particular .

Imagine a contest between two people, A and B, and imagine yourself to be B. Person A
stipulates that the fixed number should be approximated by the values of to within a
degree of accuracy (say, 0.01). Person B then responds by finding a number such that if

, then . Then A may become more exacting and challenge
B with a smaller value of (say, 0.0001). Again B has to respond by finding a correspon-
ding . Usually the smaller the value of , the smaller the corresponding value of must be.
If B always wins, no matter how small A makes , then 

Prove that .

SOLUTION
1. Preliminary analysis of the problem (guessing a value for ). Let be a given

positive number. We want to find a number such that

if    

But . Therefore we want 
such that

if    

that is, if    then    

This suggests that we should choose .
2. Proof (showing that this works). Given , choose . If

, then

Thus

if    

Therefore, by the definition of a limit,

This example is illustrated by Figure 9.

EXAMPLE 2v

lim
x l3

!4x ! 5" ! 7

# !4x ! 5" ! 7 # " #then0 " # x ! 3 # " $

# !4x ! 5" ! 7 # ! # 4x ! 12 # ! 4# x ! 3 # " 4$ ! 4$#

4% ! #

0 " # x ! 3 # " $
$ ! #&4# % 0$

$ ! #&4

# x ! 3 # "
#

4
0 " # x ! 3 # " $

4# x ! 3 # " #then0 " # x ! 3 # " $

$# !4x ! 5" ! 7 # ! # 4x ! 12 # ! # 4!x ! 3" # ! 4# x ! 3 #
# !4x ! 5" ! 7 # " #then0 " # x ! 3 # " $

$
#$

lim
x l3

!4x ! 5" ! 7

lim x l a f !x" ! L.#
$#$

#
# f !x" ! L # " #0 " # x ! a # " $

$#
f !x"L

## % 0$
#

#$
# ! 0.2

$$ ! 0.08

f !x"x

# !x 3 ! 5x & 6" ! 2 # " 0.2then# x ! 1 # " 0.08

$ ! 0.08$
1 ! 0.92 ! 0.08

x ! 1x ! 1!0.92, 1.12"

In Module 2.4/2.6 you can explore the
precise definition of a limit both graphically and
numerically.

TEC

FIGURE 9

y

0 x

7+∑
7

7-∑

3-∂ 3+∂
3

y=4x-5
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SECTION 2.4 THE PRECISE DEFINITION OF A L IMIT 113

Note that in the solution of Example 2 there were two stages—guessing and proving. 
We made a preliminary analysis that enabled us to guess a value for . But then in the sec-
ond stage we had to go back and prove in a careful, logical fashion that we had made a cor-
rect guess. This procedure is typical of much of mathematics. Sometimes it is necessary to
first make an intelligent guess about the answer to a problem and then prove that the guess
is correct.

The intuitive definitions of one-sided limits that were given in Section 2.2 can be pre-
cisely reformulated as follows.

Definition of Left-Hand Limit

if for every number there is a number such that

if    

Definition of Right-Hand Limit

if for every number there is a number such that

if    

Notice that Definition 3 is the same as Definition 2 except that is restricted to lie in the
left half of the interval . In Definition 4, is restricted to lie in the
right half of the interval 

Use Definition 4 to prove that 

SOLUTION
1. Guessing a value for . Let be a given positive number. Here and ,

so we want to find a number such that

if    

that is, if    

or, squaring both sides of the inequality , we get

if    

This suggests that we should choose 
2. Showing that this works. Given , let . If , then

so

According to Definition 4, this shows that .lim x l 0! sx ! 0

! sx " 0 ! # $

sx # s% ! s$ 2 ! $

0 # x # %% ! $2$ & 0%

% ! $2.

x # $2then0 # x # %

sx # $

EXAMPLE 3v

4

3

sx # $then0 # x # %

! sx " 0 ! # $then0 # x # %

%
L ! 0a ! 0$%

lim
x l 0!

sx ! 0.

"a " %, a ! %#."a, a ! %#
x"a " %, a ! %#"a " %, a#
x

! f "x# " L ! # $thena # x # a ! %

% & 0$ & 0

lim
x la!

f "x# ! L

! f "x# " L ! # $thena " % # x # a

% & 0$ & 0

lim
x la"

f "x# ! L

%

After the invention of calculus in the 17th cen-
tury, there followed a period of free development
of the subject in the 18th century. Mathemati-
cians like the Bernoulli brothers and Euler were
eager to exploit the power of calculus and boldly
explored the consequences of this new and won-
derful mathematical theory without worrying too
much about whether their proofs were
completely correct.

The 19th century, by contrast, was the Age of
Rigor in mathematics. There was a movement to
go back to the foundations of the subject—to
provide careful definitions and rigorous proofs.
At the forefront of this movement was the 
French mathematician Augustin-Louis Cauchy
(1789–1857), who started out as a military engi-
neer before becoming a mathematics professor
in Paris. Cauchy took Newton’s idea of a limit,
which was kept alive in the 18th century by the
French mathematician Jean d’Alembert, and
made it more precise. His definition of a limit
reads as follows: “When the successive values
attributed to a variable approach indefinitely a
fixed value so as to end by differing from it by 
as little as one wishes, this last is called the
limit of all the others.” But when Cauchy used
this definition in examples and proofs, he often
employed delta-epsilon inequalities similar to 
the ones in this section. A typical Cauchy proof
starts with: “Designate by and two very
small numbers; . . .” He used because of the
correspondence between epsilon and the French
word erreur and because delta corresponds to
différence. Later, the German mathematician
Karl Weierstrass (1815–1897) stated the defini-
tion of a limit exactly as in our Definition 2.

%

Cauchy and Limits

$
$%
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114 CHAPTER 2 LIMITS AND DERIVATIVES

Prove that .

SOLUTION
1. Guessing a value for . Let be given. We have to find a number 

such that
if    

To connect with we write . Then we
want

if    

Notice that if we can find a positive constant such that , then

and we can make by taking .
We can find such a number if we restrict to lie in some interval centered at 3. 

In fact, since we are interested only in values of that are close to 3, it is reasonable 
to assume that is within a distance l from 3, that is, . Then , 
so . Thus we have , and so is a suitable choice for 
the constant.

But now there are two restrictions on , namely

To make sure that both of these inequalities are satisfied, we take to be the smaller of
the two numbers 1 and . The notation for this is .

2. Showing that this works. Given , let . If , 
then (as in part l). We also have

, so

This shows that .

As Example 4 shows, it is not always easy to prove that limit statements are true 
using the definition. In fact, if we had been given a more complicated function such as

, a proof would require a great deal of ingenuity. Fortu-
nately this is unnecessary because the Limit Laws stated in Section 2.3 can be proved using
Definition 2, and then the limits of complicated functions can be found rigorously from the
Limit Laws without resorting to the definition directly.

For instance, we prove the Sum Law: If and both
exist, then

The remaining laws are proved in the exercises and in Appendix F.

PROOF OF THE SUM LAW Let be given. We must find such that

then    if 0 ! ! x " a ! ! # ! f "x# $ t"x# " "L $ M # ! ! %

EXAMPLE 4 lim
x l 3

x 2 ! 9

# & 0% & 0

lim
x l a

$ f "x# $ t"x#% ! L $ M

lim x l a t"x# ! Mlim x l a f "x# ! L

f "x# ! "6x 2 " 8x $ 9#&"2x 2 " 1#
%, #

lim x l3 x 2 ! 9

! x 2 " 9 ! ! ! x $ 3 ! ! x " 3 ! ! 7 !
%

7
! %

! x " 3 ! ! %&7
! x " 3 ! ! 1 ? 2 ! x ! 4 ? ! x $ 3 ! ! 7

0 ! ! x " 3 ! ! ## ! min '1, %&7(% & 0#

# ! min '1, %&7(%&7
#

! x " 3 ! !
%

C
!

%

7
and! x " 3 ! ! 1

! x " 3 !
C ! 7! x $ 3 ! ! 75 ! x $ 3 ! 7

2 ! x ! 4! x " 3 ! ! 1x
x

xC
! #%&C!! x " 3 !C! x " 3 ! ! %

! x $ 3 ! ! x " 3 ! ! C! x " 3 !
! x $ 3 ! ! CC

! x $ 3 ! ! x " 3 ! ! %then0 ! ! x " 3 ! ! #

! x 2 " 9 ! ! ! "x $ 3#"x " 3# !! x " 3 !! x 2 " 9 !
! x 2 " 9 ! ! %then0 ! ! x " 3 ! ! #

# & 0% & 0#
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SECTION 2.4 THE PRECISE DEFINITION OF A L IMIT 115

Using the Triangle Inequality we can write

We make less than by making each of the terms 
and less than .

Since and , there exists a number such that

if    

Similarly, since , there exists a number such that

if    

Let , the smaller of the numbers and . Notice that

and so

Therefore, by ,

To summarize,

then    

Thus, by the definition of a limit,

Infinite Limits
Infinite limits can also be defined in a precise way. The following is a precise version of Defi-
nition 4 in Section 2.2.

Definition Let be a function defined on some open interval that contains the
number , except possibly at itself. Then

means that for every positive number there is a positive number such that

if    0 ! ! x " a ! ! # then f "x# $ M

5

# 2

6

#M

lim
xl a

f "x# ! %

aa
f

#1

5

lim
xl a

$ f "x# & t"x#% ! L & M

! f "x# & t"x# " "L & M # ! ! '0 ! ! x " a ! ! #if

!
'

2
&

'

2
! '

! f "x# & t"x# " "L & M # ! ( ! f "x# " L ! & ! t"x# " M !

! t"x# " M ! !
'

2
and! f "x# " L ! !

'

2

0 ! ! x " a ! ! # 2and0 ! ! x " a ! ! #1then0 ! ! x " a ! ! #if

# ! min &#1, # 2 '

! t"x# " M ! !
'

2
then0 ! ! x " a ! ! # 2

# 2 $ 0lim xl a t"x# ! M

! f "x# " L ! !
'

2
then0 ! ! x " a ! ! #1

#1 $ 0lim xl a f "x# ! L$ 0'(2
'(2! t"x# " M !

! f "x# " L !'! f "x# & t"x# " "L & M # !
( ! f "x# " L ! & ! t"x# " M !

! f "x# & t"x# " "L & M # ! ! ! " f "x# " L# & " t"x# " M # !

Triangle Inequality:

(See Appendix A.)

! a & b ! ( ! a ! & ! b !
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116 CHAPTER 2 LIMITS AND DERIVATIVES

FIGURE 10

0 x
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a+∂a-∂

FIGURE 11

y

y=N

0 x

N

a

a+∂a-∂

This says that the values of can be made arbitrarily large (larger than any given
number ) by taking close enough to (within a distance , where depends on , but
with ). A geometric illustration is shown in Figure 10.

Given any horizontal line , we can find a number such that if we restrict
to lie in the interval but , then the curve lies above the line

. You can see that if a larger is chosen, then a smaller may be required.

Use Definition 6 to prove that .

SOLUTION Let be a given positive number. We want to find a number such that

if    

But

So if we choose and , then . This shows that 
as .

Similarly, the following is a precise version of Definition 5 in Section 2.2. It is illus-
trated by Figure 11.

Definition Let be a function defined on some open interval that contains the
number , except possibly at itself. Then

means that for every negative number there is a positive number such that

if    

7

EXAMPLE 5v

f !x" ! Nthen0 ! # x " a # ! #

#N

lim
xl a

f !x" ! "$

aa
f

x l 01$x 2 l $
1$x 2 % M0 ! # x # ! # ! 1$sM# ! 1$sM

# x # !
1

sM&?x 2 !
1
M

&?
1
x 2 % M

1$x 2 % Mthen0 ! # x # ! #

#M

lim
xl 0

1
x 2 ! $

#My ! M
y ! f !x"x " a!a " #, a & #"

x# % 0y ! M
x " a

M##axM
f !x"

1. Use the given graph of to find a number such that

if    then    

x

y

0

1.2
1

0.8

1 1.10.7

# f !x" " 1 # ! 0.2# x " 1 # ! #

#f 2. Use the given graph of to find a number such that

if    then    

x

y

0

2.5
2

1.5

3 3.82.6

# f !x" " 2 # ! 0.50 ! # x " 3 # ! #

#f

2.4 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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SECTION 2.4 THE PRECISE DEFINITION OF A L IMIT 117

3. Use the given graph of to find a number such
that

if    then    

4. Use the given graph of to find a number such
that

if    then    

; 5. Use a graph to find a number such that

if    then    

; 6. Use a graph to find a number such that

if    then    

; 7. For the limit

illustrate Definition 2 by finding values of that correspond
to and .

; 8. For the limit

illustrate Definition 2 by finding values of that correspond
to and 

; 9. Given that , illustrate Definition 6 by 
finding values of that correspond to (a) and 
(b) .

; 10. Use a graph to find a number such that

if    then    5 ! x ! 5 " #
x 2

sx $ 5
% 100

#
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# M ! 1000
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x 2 " 4

$ 0.4 % ! 0.1

#

$ tan x $ 1$ ! 0.2% x $
&

4 % ! #

#

x

y

? 1 ?0

1.5

1

0.5

y=≈

??

y=œ„x

x

y

40

2
2.4

1.6

$ x 2 $ 1 $ ! 1
2$ x $ 1 $ ! #

#f "x# ! x2

$ sx $ 2 $ ! 0.4$ x $ 4 $ ! #

#f "x# ! sx 11. A machinist is required to manufacture a circular metal disk
with area . 
(a) What radius produces such a disk?
(b) If the machinist is allowed an error tolerance of

in the area of the disk, how close to the ideal radius in
part (a) must the machinist control the radius?

(c) In terms of the definition of , what 
is ? What is ? What is ? What is ? What value of

is given? What is the corresponding value of ?

; 12. A crystal growth furnace is used in research to determine
how best to manufacture crystals used in electronic compo-
nents for the space shuttle. For proper growth of the crystal,
the temperature must be controlled accurately by adjusting
the input power. Suppose the relationship is given by 

where is the temperature in degrees Celsius and is the
power input in watts.
(a) How much power is needed to maintain the temperature 

at ?
(b) If the temperature is allowed to vary from by up 

to , what range of wattage is allowed for the input
power?

(c) In terms of the definition of , what 
is ? What is ? What is ? What is ? What value of 

is given? What is the corresponding value of ?

13. (a) Find a number such that if , then
, where .

(b) Repeat part (a) with .

14. Given that , illustrate Definition 2 by
finding values of that correspond to , , 
and .

15–18 Prove the statement using the definition of a limit and
illustrate with a diagram like Figure 9.

15. 16.

17. 18.

19–32 Prove the statement using the definition of a limit.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.lim
xl 2

"x 2 $ 4x " 5# ! 1 lim
xl 2

"x 2 " 2x $ 7# ! 1

lim
xl 0 $ x $ ! 0 lim

xl$ 6"
s8 6 " x ! 0

lim
xl 0

x 2 ! 0 lim
xl 0

x 3 ! 0

lim
xl a

x ! a lim
xl a

c ! c

lim
xl2

x 2 " x $ 6
x $ 2

! 5 lim
xl$ 1.5

9 $ 4x 2

3 " 2x
! 6

lim
xl1

2 " 4x
3

! 2 lim
xl 10

(3 $ 4
5 x) ! $ 5

(, #

lim
xl$ 2

"3x " 5# ! $ 1lim
xl$ 3

"1 $ 4x# ! 13

lim
xl 3

(1 " 1
3 x) ! 2 lim

xl 4
"2x $ 5# ! 3

(, #

( ! 0.01
( ! 0.05( ! 0.1#

limxl 2"5x $ 7# ! 3

( ! 0.01
( ! 0.1$ 4x $ 8$ ! (

$ x $ 2$ ! ##

#(
Laf "x#x

limxla f "x# ! L(, #

) 1*C
200*C

200*C

wT

T"w# ! 0.1w 2 " 2.155w " 20

#(
Laf "x#x

limxla f "x# ! L(, #

) 5 cm2

1000 cm2
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118 CHAPTER 2 LIMITS AND DERIVATIVES

31. 32.

33. Verify that another possible choice of for showing that
in Example 4 is 

34. Verify, by a geometric argument, that the largest pos-
sible choice of for showing that is

.

35. (a) For the limit , use a graph to
find a value of that corresponds to 

(b) By using a computer algebra system to solve the cubic
equation , find the largest possible
value of that works for any given .

(c) Put in your answer to part (b) and compare with
your answer to part (a).

36. Prove that .

37. Prove that if 

Hint: 

38. If is the Heaviside function defined in Example 6 in Sec-
 tion 2.2, prove, using Definition 2, that does not
exist. [Hint: Use an indirect proof as follows. Suppose that

lim t l 0 H!t"

CAS

H

Use | sx ! sa | ! # x ! a #
sx " sa

.$%
a # 0.lim

x l a
sx ! sa

lim
x l2

1
x

!
1
2

$ ! 0.4
$ # 0%

x3 " x " 1 ! 3 " $

$ ! 0.4.%
limx l 1 !x3 " x " 1" ! 3

% ! s9 " $ ! 3
limx l3 x2 ! 9%

% ! min &2, $'8(.limx l3 x2 ! 9
%

lim
x l!2

!x 2 ! 1" ! 3 lim
x l 2

x 3 ! 8 the limit is . Take in the definition of a limit and try
to arrive at a contradiction.]

39. If the function is defined by

prove that does not exist.

40. By comparing Definitions 2, 3, and 4, prove Theorem 1 in 
Section 2.3.

41. How close to do we have to take so that

42. Prove, using Definition 6, that .

43. Prove that .

44. Suppose that and , where
is a real number. Prove each statement.
(a)

(b) if 

(c) if 

L $ ! 1
2

c & 0lim
xl a

)f !x"t!x"* ! !'

c # 0lim
x l a

)f !x"t!x"* ! '

lim
x l a

)f !x" " t!x"*! '

climx l a t!x" ! clim x l a f !x" ! '

lim
x l 0"

ln x ! !'

lim
x l!3

1
!x " 3"4 ! '

1
!x " 3"4 # 10,000

x!3

f !x"lim x l 0

f !x" ! +0
1

if x is rational
if x is irrational

f

We noticed in Section 2.3 that the limit of a function as approaches can often be found
simply by calculating the value of the function at . Functions with this property are called
continuous at a. We will see that the mathematical definition of continuity corresponds
closely with the meaning of the word continuity in everyday language. (A continuous
process is one that takes place gradually, without interruption or abrupt change.)

Definition A function is continuous at a number a if

Notice that Definition l implicitly requires three things if is continuous at a:

1. is defined (that is, a is in the domain of )

2. exists

3.

The definition says that is continuous at if approaches as x approaches a.
Thus a continuous function has the property that a small change in x produces only af

f a f !x" f !a"

lim
x la

f !x" ! f !a"

lim
x la

f !x"

ff !a"

f

lim
x la

f !x" ! f !a"

f1

a
ax

2.5 Continuity

f(a)

x0

y

a

y=ƒ
ƒ

approaches
f(a).

As x approaches a,

FIGURE 1 

As illustrated in Figure 1, if is continuous,
then the points on the graph of 
approach the point on the graph. So
there is no gap in the curve.

!a, f !a""
f!x, f !x""

f
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SECTION 2.5 CONTINUITY 119

small change in . In fact, the change in can be kept as small as we please by keep-
ing the change in sufficiently small.

If is defined near ( in other words, is defined on an open interval containing , 
except perhaps at ), we say that is discontinuous at a (or has a discontinuity at ) if

is not continuous at .
Physical phenomena are usually continuous. For instance, the displacement or velocity

of a vehicle varies continuously with time, as does a person’s height. But discontinuities 
do occur in such situations as electric currents. [See Example 6 in Section 2.2, where the
Heaviside function is discontinuous at because does not exist.]

Geometrically, you can think of a function that is continuous at every number in an 
interval as a function whose graph has no break in it. The graph can be drawn without 
removing your pen from the paper.

Figure 2 shows the graph of a function . At which numbers is discontinu-
ous? Why?

SOLUTION It looks as if there is a discontinuity when a ! 1 because the graph has a break
there. The official reason that is discontinuous at 1 is that is not defined.

The graph also has a break when , but the reason for the discontinuity is differ-
ent. Here, is defined, but does not exist (because the left and right limits
are different). So is discontinuous at 3.

What about ? Here, is defined and exists (because the left and
right limits are the same). But

So is discontinuous at 5.

Now let’s see how to detect discontinuities when a function is defined by a formula.

Where are each of the following functions discontinuous?

(a) (b) 

(c) (d) 

SOLUTION
(a) Notice that is not defined, so f is discontinuous at 2. Later we’ll see why is
continuous at all other numbers.
(b) Here is defined but

does not exist. (See Example 8 in Section 2.2.) So is discontinuous at 0.
(c) Here is defined and

EXAMPLE 2v

lim
xl2

f !x" ! lim
xl2

x 2 ! x ! 2
x ! 2

! lim
xl2

!x ! 2"!x " 1"
x ! 2

! lim
xl2

!x " 1" ! 3

f !2" ! 1
f

lim
xl 0

f !x" ! lim
xl 0

1
x 2

f !0" ! 1

ff !2"

f !x" ! #x$f !x" ! % x 2 ! x ! 2
x ! 2

if x " 2

1 if x ! 2

f !x" ! % 1
x 2 if x " 0

1 if x ! 0
f !x" !

x 2 ! x ! 2
x ! 2

EXAMPLE 1

f !x"f !x"

f

lim
xl 5

f !x" " f !5"

lim xl5 f !x"f !5"a ! 5
f

lim xl3 f !x"f !3"
a ! 3

f !1"f

ff

lim tl 0 H!t"0

af
affa
afaf

x

FIGURE 2

y

0 x1 2 3 4 5
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120 CHAPTER 2 LIMITS AND DERIVATIVES

exists. But 

so is not continuous at 2.
(d) The greatest integer function has discontinuities at all of the integers
because does not exist if is an integer. (See Example 10 and Exercise 51 in
Section 2.3.)

Figure 3 shows the graphs of the functions in Example 2. In each case the graph can’t be
drawn without lifting the pen from the paper because a hole or break or jump occurs in the
graph. The kind of discontinuity illustrated in parts (a) and (c) is called removable because
we could remove the discontinuity by redefining at just the single number 2. [The func-
tion is continuous.] The discontinuity in part (b) is called an infinite discon-
tinuity. The discontinuities in part (d) are called jump discontinuities because the function
“jumps” from one value to another.

Definition A function is continuous from the right at a number a if

and is continuous from the left at a if

At each integer , the function [see Figure 3(d)] is continuous
from the right but discontinuous from the left because

but

Definition A function is continuous on an interval if it is continuous at
every number in the interval. (If f is defined only on one side of an endpoint of the
interval, we understand continuous at the endpoint to mean continuous from the
right or continuous from the left.)

EXAMPLE 3

f3

lim
x ln!

f !x" ! lim
x ln!

#x$ ! n ! 1 " f !n"

lim
x ln"

f !x" ! lim
x ln"

#x$ ! n ! f !n"

f !x" ! #x$n

lim
x la!

f !x" ! f !a"

f

lim
x la"

f !x" ! f !a"

f2

1 2 3

1

x

y

0

(d) ƒ=[x]

1 2

1

x

y

0

(c) ƒ= if  x≠2
1 if x=2

≈-x-2
x-2(b) ƒ= if  x≠0

1 if 

1

x=0

1

x

y

01 2 x

y

0

1

(a) ƒ=≈-x-2
x-2

FIGURE 3
Graphs of the functions in Example 2

≈

t!x" ! x " 1
f

nlim x ln #x$
f !x" ! #x$

f

lim
x l2

f !x" " f !2"
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SECTION 2.5 CONTINUITY 121

Show that the function is continuous on the 
interval 

SOLUTION If , then using the Limit Laws, we have

(by Laws 2 and 7)

(by 11)

(by 2, 7, and 9)

Thus, by Definition l, is continuous at if . Similar calculations show that

and    

so is continuous from the right at !1 and continuous from the left at 1. Therefore,
according to Definition 3, is continuous on .

The graph of is sketched in Figure 4. It is the lower half of the circle

Instead of always using Definitions 1, 2, and 3 to verify the continuity of a function as
we did in Example 4, it is often convenient to use the next theorem, which shows how to
build up complicated continuous functions from simple ones.

Theorem If and are continuous at and is a constant, then the following
functions are also continuous at :
1. 2. 3.

4. 5. if 

PROOF Each of the five parts of this theorem follows from the corresponding Limit Law
in Section 2.3. For instance, we give the proof of part 1. Since and are continuous at 
, we have

Therefore

(by Law 1)

This shows that is continuous at .f " t a

! ! f " t"!a"

! f !a" " t!a"

! lim
xla

f !x" " lim
xla

t!x"

lim
xla

! f " t"!x" ! lim
xla

# f !x" " t!x"$

lim
xla

t!x" ! t!a"andlim
xla

f !x" ! f !a"

a
tf

t!a" " 0
f
tft

cff ! tf " t
a

catf4

EXAMPLE 4
#!1, 1$.

f !x" ! 1 ! s1 ! x 2

x 2 " !y ! 1"2 ! 1

f
#!1, 1$f

f

lim
xl1!

f !x" ! 1 ! f !1"lim
xl!1"

f !x" ! 1 ! f !!1"

!1 # a # 1af

! f !a"

! 1 ! s1 ! a 2

! 1 ! slim
xl a

!1 ! x 2 "

! 1 ! lim
xl a

s1 ! x 2

lim
xl a

f !x" ! lim
xl a

(1 ! s1 ! x 2 )

!1 # a # 1

1-1

1

x

y

0

ƒ=1-œ„„„„„1-≈

FIGURE 4 
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122 CHAPTER 2 LIMITS AND DERIVATIVES

It follows from Theorem 4 and Definition 3 that if and are continuous on an interval,
then so are the functions , and ( if is never 0) . The following theo-
rem was stated in Section 2.3 as the Direct Substitution Property.

Theorem
(a) Any polynomial is continuous everywhere; that is, it is continuous on

.
(b) Any rational function is continuous wherever it is defined; that is, it is contin-

uous on its domain.

PROOF
(a) A polynomial is a function of the form

where are constants. We know that

(by Law 7)

and (by 9)

This equation is precisely the statement that the function is a continuous 
function. Thus, by part 3 of Theorem 4, the function is continuous. Since
is a sum of functions of this form and a constant function, it follows from part 1 of 
Theorem 4 that is continuous.
(b) A rational function is a function of the form

where and are polynomials. The domain of is . We know
from part (a) that and are continuous everywhere. Thus, by part 5 of Theorem 4, 

is continuous at every number in .

As an illustration of Theorem 5, observe that the volume of a sphere varies continuously
with its radius because the formula shows that is a polynomial function 
of . Likewise, if a ball is thrown vertically into the air with a velocity of , then the
height of the ball in feet seconds later is given by the formula . Again this
is a polynomial function, so the height is a continuous function of the elapsed time.

Knowledge of which functions are continuous enables us to evaluate some limits very
quickly, as the following example shows. Compare it with Example 2(b) in Section 2.3.

Find .

SOLUTION The function

is rational, so by Theorem 5 it is continuous on its domain, which is . {x ! x ! 5
3}

EXAMPLE 5

h " 50t ! 16t 2t
50 ft"sr

VV#r$ " 4
3"r 3

f#x$ "
x 3 # 2x 2 ! 1

5 ! 3x

lim
xl!2

x 3 # 2x 2 ! 1
5 ! 3x

Df
QP

D " %x ! ! ! Q#x$ ! 0&fQP

f#x$ "
P#x$
Q#x$

P

Pt#x$ " cxm
f#x$ " xm

m " 1, 2, . . . , nlim
xla

xm " am

lim
xl a

c0 " c0

c0, c1, . . . , cn

P#x$ " cnxn # cn!1xn!1 # $ $ $ # c1x # c0

! " #!%, %$

5

f"ttf # t, f ! t, cf, ft
tf
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SECTION 2.5 CONTINUITY 123

Therefore

It turns out that most of the familiar functions are continuous at every number in their
domains. For instance, Limit Law 10 (page 100) is exactly the statement that root functions
are continuous.

From the appearance of the graphs of the sine and cosine functions (Figure 18 in Section
1.2), we would certainly guess that they are continuous. We know from the definitions of

and that the coordinates of the point P in Figure 5 are . As ,
we see that P approaches the point and so and . Thus

Since and , the equations in assert that the cosine and sine func-
tions are continuous at 0. The addition formulas for cosine and sine can then be used to 
deduce that these functions are continuous everywhere (see Exercises 60 and 61).

It follows from part 5 of Theorem 4 that

is continuous except where . This happens when is an odd integer multiple of
, so has infinite discontinuities when and so on

(see Figure 6).
The inverse function of any continuous one-to-one function is also continuous. (This

fact is proved in Appendix F, but our geometric intuition makes it seem plausible: The graph 
of is obtained by reflecting the graph of f about the line . So if the graph of f
has no break in it, neither does the graph of .) Thus the inverse trigonometric functions
are continuous.

In Section 1.5 we defined the exponential function so as to fill in the holes in the
graph of where x is rational. In other words, the very definition of makes 
it a continuous function on !. Therefore its inverse function is continuous 
on .

Theorem The following types of functions are continuous at every number in
their domains:

polynomials      rational functions      root functions

trigonometric functions      inverse trigonometric functions

exponential functions logarithmic functions

Where is the function continuous?

SOLUTION We know from Theorem 7 that the function is continuous for 
and is continuous on !. Thus, by part 1 of Theorem 4, is
continuous on . The denominator, , is a polynomial, so it is continuous

6

!0, !" y ! x 2 " 1

EXAMPLE 6

y ! tan" 1x y ! ln x # tan" 1x
y ! ln x x $ 0

f !x" !
ln x # tan" 1x

x 2 " 1

7

!0, !"
y ! loga x

y ! axy ! ax
y ! ax

f " 1
y ! xf " 1

lim
xl" 2

x 3 # 2x 2 " 1
5 " 3x

! lim
xl" 2

f !x" ! f !" 2"

!
!" 2"3 # 2!" 2"2 " 1

5 " 3!" 2"
! "

1
11

x ! % &#2, % 3&#2, % 5&#2,y ! tan x&#2
xcos x ! 0

tan x !
sin x
cos x

sin 0 ! 0cos 0 ! 1

lim
' l 0

cos ' ! 1 lim
' l 0

sin ' ! 06

sin ' l 0cos ' l 1!1, 0"
' l 0!cos ', sin '"cos 'sin '

¨

1

x0

y

(1, 0)

P(cos ¨, sin ¨)

FIGURE 5 

Another way to establish the limits in is 
to use the Squeeze Theorem with the inequality

(for ), which is proved in 
Section 3.3.

6

' $ 0sin ' ( '

__ x

y

π0_π

1

π
2

3π
 2

π
2

3π
 2

FIGURE 6 y=tan x

The inverse trigonometric functions are reviewed
in Section 1.6.
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124 CHAPTER 2 LIMITS AND DERIVATIVES

everywhere. Therefore, by part 5 of Theorem 4, f is continuous at all positive numbers x
except where . So f is continuous on the intervals and .

Evaluate .

SOLUTION Theorem 7 tells us that is continuous. The function in the denomi-
nator, , is the sum of two continuous functions and is therefore continuous.
Notice that this function is never 0 because for all and so
everywhere. Thus the ratio

is continuous everywhere. Hence, by the definition of a continuous function,

Another way of combining continuous functions and to get a new continuous func-
tion is to form the composite function . This fact is a consequence of the following 
theorem.

Theorem If is continuous at and then 
In other words,

Intuitively, Theorem 8 is reasonable because if is close to , then is close to ,
and since is continuous at , if is close to , then is close to . A proof of
Theorem 8 is given in Appendix F.

Evaluate .

SOLUTION Because is a continuous function, we can apply Theorem 8:

Let’s now apply Theorem 8 in the special case where , with being a posi-
tive integer. Then

f (t!x") ! sn t!x"

nf !x" ! sn x

EXAMPLE 8

EXAMPLE 7

! arcsin
1
2

!
!

6

! arcsin#lim
xl1

1
1 " sx $

! arcsin#lim
xl1

1 # sx
(1 # sx ) (1 " sx )$

lim
xl1

arcsin#1 # sx
1 # x $ ! arcsin# lim

xl1

1 # sx
1 # x $

arcsin

lim
xl1

arcsin#1 # sx
1 # x $

f !b"f (t!x")bt!x"bf
bt!x"ax

lim
xla

f (t!x") ! f (lim
xla

t!x")
lim
xla

f (t!x") ! f !b".lim
xla

t!x" ! b,bf8

f ! t
tf

lim
xl!

sin x
2 " cos x

! lim
xl!

f !x" ! f !!" !
sin !

2 " cos !
!

0
2 # 1

! 0

f !x" !
sin x

2 " cos x

2 " cos x $ 0xcos x % # 1
y ! 2 " cos x

y ! sin x

lim
xl!

sin x
2 " cos x

!1, &"!0, 1"x 2 # 1 ! 0

This theorem says that a limit symbol can be
moved through a function symbol if the function
is continuous and the limit exists. In other words,
the order of these two symbols can be reversed.
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and

If we put these expressions into Theorem 8, we get

and so Limit Law 11 has now been proved. (We assume that the roots exist.)

Theorem If is continuous at and is continuous at , then the compos-
ite function given by is continuous at .

This theorem is often expressed informally by saying “a continuous function of a con-
tinuous function is a continuous function.”

PROOF Since is continuous at , we have

Since is continuous at , we can apply Theorem 8 to obtain

which is precisely the statement that the function is continuous at ; that
is, is continuous at .

Where are the following functions continuous?
(a) (b) 

SOLUTION
(a) We have , where

Now is continuous on since it is a polynomial, and is also continuous everywhere.
Thus is continuous on by Theorem 9.
(b) We know from Theorem 7 that is continuous and 
is continuous (because both and are continuous). Therefore, by
Theorem 9, is continuous wherever it is defined. Now is
defined when . So it is undefined when , and this happens
when . Thus F has discontinuities when x is an odd multiple of and
is continuous on the intervals between these values (see Figure 7).

An important property of continuous functions is expressed by the following theorem,
whose proof is found in more advanced books on calculus.

The Intermediate Value Theorem Suppose that is continuous on the closed
interval and let be any number between and , where .
Then there exists a number in such that .

f (lim
xl a

t!x") ! sn lim
xl a

t!x"

f !c" ! N!a, b"c
f !a" " f !b"f !b"f !a"N#a, b$

f10

EXAMPLE 9v

!x ! " !, " 3!, . . .
cos x ! # 11 $ cos x % 0

ln!1 $ cos x"F!x" ! f (t!x")
y ! cos xy ! 1

t!x" ! 1 $ cos xf !x" ! ln x
!h ! f " t

f!t

f !x" ! sin xandt!x" ! x 2

h!x" ! f (t!x")

F!x" ! ln!1 $ cos x"h!x" ! sin!x 2 "

af " t
ah!x" ! f (t!x")

lim
xla

f (t!x") ! f (t!a")
b ! t!a"f

lim
xl a

t!x" ! t!a"

at

a! f " t"!x" ! f (t!x")f " t
t!a"fat9

lim
xl a

sn t!x" ! sn lim
xl a

t!x"
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FIGURE 7 
y=ln(1+cos x)

2

_6

_10 10 
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The Intermediate Value Theorem states that a continuous function takes on every inter-
mediate value between the function values and . It is illustrated by Figure 8. Note
that the value can be taken on once [as in part (a)] or more than once [as in part (b)].

If we think of a continuous function as a function whose graph has no hole or break,
then it is easy to believe that the Intermediate Value Theorem is true. In geometric terms it
says that if any horizontal line is given between and as in Fig ure 9,
then the graph of can’t jump over the line. It must intersect somewhere.

It is important that the function in Theorem 10 be continuous. The Intermediate Value
Theorem is not true in general for discontinuous functions (see Exercise 48).

One use of the Intermediate Value Theorem is in locating roots of equations as in the
following example.

Show that there is a root of the equation

between 1 and 2.

SOLUTION Let . We are looking for a solution of the given
equation, that is, a number between 1 and 2 such that . Therefore we take

, , and in Theorem 10. We have

and

Thus ; that is, is a number between and . Now is
continuous since it is a polynomial, so the Intermediate Value Theorem says there 
is a number between 1 and 2 such that . In other words, the equation

has at least one root in the interval .
In fact, we can locate a root more precisely by using the Intermediate Value Theorem

again. Since

b0 x

y
f(a)

N

f(b)

a

y=ƒ
y=N

FIGURE 9 

v EXAMPLE 10

N
f !a" f !b"

f !1.3" ! 0.548 ! 0andf !1.2" ! "0.128 # 0

!1, 2"c4x 3 " 6x 2 $ 3x " 2 ! 0
f !c" ! 0c

ff !2"f !1"N ! 0f !1" # 0 # f !2"

f !2" ! 32 " 24 $ 6 " 2 ! 12 ! 0

f !1" ! 4 " 6 $ 3 " 2 ! "1 # 0

N ! 0b ! 2a ! 1
f !c" ! 0c

f !x" ! 4x 3 " 6x 2 $ 3x " 2

4x 3 " 6x 2 $ 3x " 2 ! 0

f

y ! Nf
y ! f !b"y ! f !a"y ! N

(b)

0 x

y

f(b)

N

f(a)

a c£ b

y=ƒ

c™c¡

(a)

0 x

y

f(b)

N

f(a)

b

y=ƒ

FIGURE 8 

a c
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SECTION 2.5 CONTINUITY 127

1. Write an equation that expresses the fact that a function 
is continuous at the number 4.

2. If is continuous on , what can you say about its
graph?

3. (a) From the graph of , state the numbers at which is
discontinuous and explain why.

(b) For each of the numbers stated in part (a), determine
whether is continuous from the right, or from the left, 
or neither.

y

x_4 2 4 6_2 0

f

ff

!!", ""f

f 4. From the graph of , state the intervals on which is 
continuous.

5–8 Sketch the graph of a function that is continuous except for
the stated discontinuity.

5. Discontinuous, but continuous from the right, at 2

6. Discontinuities at and 4, but continuous from the left at
and from the right at 4

7. Removable discontinuity at 3, jump discontinuity at 5

8. Neither left nor right continuous at , continuous only from
the left at 2

!2

!1!1

f

y

x_4 2 4 6_2 8

tt

2.5 Exercises

a root must lie between 1.2 and 1.3. A calculator gives, by trial and error,

so a root lies in the interval .

We can use a graphing calculator or computer to illustrate the use of the Intermediate
Value Theorem in Example 10. Figure 10 shows the graph of in the viewing rectangle

by and you can see that the graph crosses the -axis between 1 and 2. Fig-
 ure 11 shows the result of zooming in to the viewing rectangle by .

In fact, the Intermediate Value Theorem plays a role in the very way these graphing de-
vices work. A computer calculates a finite number of points on the graph and turns on the
pixels that contain these calculated points. It assumes that the function is continuous and
takes on all the intermediate values between two consecutive points. The computer there-
fore connects the pixels by turning on the intermediate pixels.

!1.22, 1.23"

f !1.23" ! 0.056068 # 0andf !1.22" ! !0.007008 $ 0

f

0.2

_0.2

1.2 1.3

FIGURE 11FIGURE 10

3

_3

_1 3

#!0.2, 0.2$#1.2, 1.3$
x#!3, 3$#!1, 3$

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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128 CHAPTER 2 LIMITS AND DERIVATIVES

9. The toll charged for driving on a certain stretch of a toll road
is $5 except during rush hours (between 7 AM and 10 AM and
between 4 PM and 7 PM) when the toll is $7.
(a) Sketch a graph of as a function of the time , measured in

hours past midnight.
(b) Discuss the discontinuities of this function and their 

significance to someone who uses the road.

10. Explain why each function is continuous or discontinuous.
(a) The temperature at a specific location as a function of time
(b) The temperature at a specific time as a function of the dis-

tance due west from New York City
(c) The altitude above sea level as a function of the distance

due west from New York City
(d) The cost of a taxi ride as a function of the distance traveled
(e) The current in the circuit for the lights in a room as a func-

tion of time

11. Suppose and are continuous functions such that
and . Find .

12–14 Use the definition of continuity and the properties of limits
to show that the function is continuous at the given number .

12. ,  

13. ,  

14. ,  

15–16 Use the definition of continuity and the properties of limits 
to show that the function is continuous on the given interval.

15. ,  

16. ,  

17–22 Explain why the function is discontinuous at the given num-
ber . Sketch the graph of the function.

17.

18.

19.

20.

21. a ! 0f !x" ! #cos x
0
1 ! x 2

if x " 0
if x ! 0
if x # 0

a ! !2

a ! !2f !x" !
1

x $ 2

f !x" ! # 1
x $ 2
1

if x " !2

if x ! !2

a ! 1f !x" ! # x 2 ! x
x 2 ! 1
1

if x " 1

if x ! 1

a ! 0f !x" ! #e xx 2

if x " 0
if x % 0

a

!!&, 3$t!x" ! 2 s3 ! x

!2, &"f !x" !
2x $ 3
x ! 2

a ! 1h!t" !
2t ! 3t 2

1 $ t 3

a ! !1f !x" ! !x $ 2x 3 "4

a ! 2f !x" ! 3x 4 ! 5x $ s3 x 2 $ 4

a

f !2"lim xl2 %3 f !x" $ f !x"t!x"$ ! 36
t!2" ! 6tf

tT

T

22.

23–24 How would you “remove the discontinuity” of ? In other
words, how would you define in order to make continuous 
at 2?

23. 24.

25–32 Explain, using Theorems 4, 5, 7, and 9, why the function is
continuous at every number in its domain. State the domain.

25. 26.

27. 28.

29. 30.

31. 32.

; 33–34 Locate the discontinuities of the function and illustrate by
graphing.

33. 34.

35–38 Use continuity to evaluate the limit.

35. 36.

37. 38.

39–40 Show that is continuous on .

39.

40.

41–43 Find the numbers at which is discontinuous. At which 
of these numbers is continuous from the right, from the left, or
neither? Sketch the graph of .

41. f !x" ! #1 $ x 2

2 ! x
!x ! 2"2

if x ' 0
if 0 " x ' 2
if x # 2

f
f

f

f !x" ! #sin x if x " (&4
cos x if x % (&4

f !x" ! # x 2 if x " 1
sx if x % 1

!!&, &"f

lim
xl2

arctan' x 2 ! 4
3x 2 ! 6x(lim

xl1
ex

2!x

lim
xl(

sin!x $ sin x"lim
xl4

5 $ sx
s5 $ x

y ! ln!tan2x"y !
1

1 $ e 1&x

N!r" ! tan!1!1 $ e!r 2
"M!x" ! )1 $

1
x

B!x" !
tan x

s4 ! x 2
A!t" ! arcsin!1 $ 2t"

R!t" !
e sin t

2 $ cos (t
Q!x" !

s3 x ! 2
x 3 ! 2

G!x" !
x 2 $ 1

2x 2 ! x ! 1
F!x" !

2x 2 ! x ! 1
x 2 $ 1

f !x" !
x 3 ! 8
x 2 ! 4

f !x" !
x 2 ! x ! 2
x ! 2

ff !2"
f

a ! 3f !x" ! #2x 2 ! 5x ! 3
x ! 3

6

if x " 3

if x ! 3
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SECTION 2.5 CONTINUITY 129

42.

43.

44. The gravitational force exerted by the planet Earth on a unit
mass at a distance r from the center of the planet is

where M is the mass of Earth, R is its radius, and G is the grav-
itational constant. Is F a continuous function of r?

45. For what value of the constant is the function continuous
on ?

46. Find the values of and that make continuous everywhere.

47. Which of the following functions has a removable disconti-
nuity at ? If the discontinuity is removable, find a function
that agrees with for and is continuous at .

(a) ,  

(b) ,  

(c) ,  

48. Suppose that a function is continuous on [0, 1] except at
0.25 and that and . Let N ! 2. Sketch two
pos sible graphs of , one showing that might not satisfy 
the conclusion of the Intermediate Value Theorem and one
showing that might still satisfy the conclusion of the Inter-
mediate Value Theorem (even though it doesn’t satisfy the
hypothesis).

49. If , show that there is a number such
that .f !c" ! 1000
f !x" ! x 2 ! 10 sin x c

f

ff
f !1" ! 3f !0" ! 1

f

a ! "f !x" ! #sin x $

a ! 2f !x" !
x 3 # x 2 # 2x

x # 2

a ! 1f !x" !
x 4 # 1
x # 1

ax " af
ta

f

f !x" !

x 2 # 4
x # 2
ax 2 # bx ! 3
2x # a ! b

if x $ 2

if 2 % x $ 3
if x & 3

fba

f !x" ! %cx 2 ! 2x
x 3 # cx

if x $ 2
if x & 2

!#', '"
fc

if r & R
GM
r 2

F!r" !

GMr
R 3 if r $ R

f !x" ! %x ! 2
ex

2 # x

if x $ 0
if 0 % x % 1
if x ( 1

f !x" ! %x ! 1
1&x
sx # 3

if x % 1
if 1 $ x $ 3
if x & 3

50. Suppose is continuous on and the only solutions of the
equation are and . If , explain
why .

51–54 Use the Intermediate Value Theorem to show that there is a
root of the given equation in the specified interval.

51. ,  52. ,

53. ,  54. ,  

55–56 (a) Prove that the equation has at least one real root. 
(b) Use your calculator to find an interval of length 0.01 that 
contains a root.

55. 56.

; 57–58 (a) Prove that the equation has at least one real root. 
(b) Use your graphing device to find the root correct to three 
decimal places.

57. 58.

59. Prove that is continuous at if and only if

60. To prove that sine is continuous, we need to show that
for every real number . By Exercise 59 

an equivalent statement is that

Use to show that this is true.

61. Prove that cosine is a continuous function.

62. (a) Prove Theorem 4, part 3.
(b) Prove Theorem 4, part 5.

63. For what values of is continuous?

64. For what values of is continuous?

65. Is there a number that is exactly 1 more than its cube?

66. If and are positive numbers, prove that the equation

has at least one solution in the interval .

6

f '1, 5(

!#1, 1"

a
x 3 ! 2x 2 # 1

!
b

x 3 ! x # 2
! 0

ba

t!x" ! %0
x

if x is rational
if x is irrational

tx

f !x" ! %0
1

if x is rational
if x is irrational

fx

lim
hl 0

sin!a ! h" ! sin a

alimxla sin x ! sin a

lim
hl 0

f !a ! h" ! f !a"

af

arctan x ! 1 # x100e#x&100 ! 0.01x 2

ln x ! 3 # 2xcos x ! x 3

!1, 2"sin x ! x 2 # x!0, 1"e x ! 3 # 2x

!0, 1"s3 x ! 1 # x!1, 2"x 4 ! x # 3 ! 0

f !3" ( 6
f !2" ! 8x ! 4x ! 1f !x" ! 6
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130 CHAPTER 2 LIMITS AND DERIVATIVES

67. Show that the function

is continuous on .

68. (a) Show that the absolute value function is 
continuous everywhere.

(b) Prove that if is a continuous function on an interval, then
so is .! f !

f

F"x# ! ! x !
"!", "#

f "x# ! $x 4 sin"1%x#
0

if x " 0
if x ! 0

(c) Is the converse of the statement in part (b) also true? In
other words, if is continuous, does it follow that is
continuous? If so, prove it. If not, find a counterexample.

69. A Tibetan monk leaves the monastery at 7:00 AM and takes his
usual path to the top of the mountain, arriving at 7:00 P M. The
following morning, he starts at 7:00 AM at the top and takes the
same path back, arriving at the monastery at 7:00 P M. Use the
Intermediate Value Theorem to show that there is a point on the
path that the monk will cross at exactly the same time of day
on both days.

f! f !

In Sections 2.2 and 2.4 we investigated infinite limits and vertical asymptotes. There we let
approach a number and the result was that the values of became arbitrarily large (posi-

tive or negative). In this section we let become arbitrarily large (positive or negative) and
see what happens to .

Let’s begin by investigating the behavior of the function defined by

as becomes large. The table at the left gives values of this function correct to six decimal
places, and the graph of has been drawn by a computer in Figure 1.

As grows larger and larger you can see that the values of get closer and closer 
to 1. In fact, it seems that we can make the values of as close as we like to 1 by taking

sufficiently large. This situation is expressed symbolically by writing

In general, we use the notation

to indicate that the values of approach as becomes larger and larger.

Definition Let be a function defined on some interval . Then

means that the values of can be made arbitrarily close to by taking suf-
ficiently large.

xLf "x#

x10

y
y=1

y=≈-1
≈+1

FIGURE 1

lim
xl "

f "x# ! L

"a, "#f1

xLf "x#

lim
xl "

f "x# ! L

lim
xl "

x 2 ! 1
x 2 # 1

! 1

x
f "x#

f "x#x

f
x

f "x# !
x 2 ! 1
x 2 # 1

f
y

x
yx

2.6 Limits at Infinity; Horizontal Asymptotes 

x

0 !1
0
0.600000
0.800000
0.882353
0.923077
0.980198
0.999200
0.999800
0.999998$ 1000

$ 100
$ 50
$ 10
$ 5
$ 4
$ 3
$ 2
$ 1

f "x#
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SECTION 2.6 LIMITS AT INFINITY;  HORIZONTAL ASYMPTOTES 131

Another notation for is

as  

The symbol does not represent a number. Nonetheless, the expression is
often read as

“the limit of , as approaches infinity, is ”
or “the limit of , as becomes infinite, is ”
or “the limit of , as increases without bound, is ”

The meaning of such phrases is given by Definition 1. A more precise definition, similar to
the definition of Section 2.4, is given at the end of this section.

Geometric illustrations of Definition 1 are shown in Figure 2. Notice that there are many
ways for the graph of to approach the line (which is called a horizontal asymptote)
as we look to the far right of each graph.

Referring back to Figure 1, we see that for numerically large negative values of , the val-
ues of are close to 1. By letting decrease through negative values without bound, we
can make as close to 1 as we like. This is expressed by writing

The general definition is as follows.

Definition Let be a function defined on some interval . Then 

means that the values of can be made arbitrarily close to by taking suf-
ficiently large negative.

Again, the symbol does not represent a number, but the expression
is often read as

“the limit of , as x approaches negative infinity, is L”

Definition 2 is illustrated in Figure 3. Notice that the graph approaches the line as
we look to the far left of each graph.

Definition The line is called a horizontal asymptote of the curve
if either 

lim
x l!

f !x" ! L or lim
x l"!

f !x" ! L

y ! f !x"
3 y ! L

y ! L

f !x"

lim
x l "!

f !x" ! L"!

2

xLf !x"

lim
x l"!

f !x" ! L

!"!, a"f

lim
x l"!

x 2 " 1
x 2 # 1

! 1

f !x"
xf !x"

x

x

y

0

y=ƒ

y=L

0 x

y

y=ƒ

y=L

x

y

0

y=ƒ

y=L

y ! Lf

$, %

lim x l ! f !x" ! L

Lxf !x"
Lxf !x"

Lxf !x"

lim
x l!

f !x" ! L!

x l !f !x" l L

x    `

FIGURE 2 
Examples illustrating lim

 
ƒ=L

x    _`

FIGURE 3 
Examples illustrating  lim  ƒ=L

0

y

x

y=ƒ

y=L

x0

y

y=ƒ
y=L
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132 CHAPTER 2 LIMITS AND DERIVATIVES

For instance, the curve illustrated in Figure 1 has the line as a horizontal asymp-
tote because 

An example of a curve with two horizontal asymptotes is . (See Figure 4.) 
In fact,

so both of the lines and are horizontal asymptotes. (This follows from
the fact that the lines are vertical asymptotes of the graph of tan.)

Find the infinite limits, limits at infinity, and asymptotes for the function
whose graph is shown in Figure 5.

SOLUTION We see that the values of become large as from both sides, so

Notice that becomes large negative as x approaches 2 from the left, but large posi-
tive as x approaches 2 from the right. So

Thus both of the lines and are vertical asymptotes.
As x becomes large, it appears that approaches 4. But as x decreases through

negative values, approaches 2. So

This means that both y ! 4 and y ! 2 are horizontal asymptotes.

Find and .

SOLUTION Observe that when is large, is small. For instance, 

In fact, by taking large enough, we can make as close to 0 as we please. Therefore,
according to Definition 1, we have 

Similar reasoning shows that when is large negative, is small negative, so we also
have

y ! 1

lim
xl!"

1
x

! 0

x 1!x

lim
xl "

1
x

! 0

x 1!x

EXAMPLE 2

EXAMPLE 1

1
1,000,000

! 0.000001
1

10,000
! 0.0001

1
100

! 0.01

1!xx

lim
xl!"

1
x

lim
xl "

1
x

lim
xl!"

f"x# ! 2andlim
xl "

f"x# ! 4

f"x#
f"x#

x ! 2x ! !1

lim
xl2#

f"x# ! "andlim
xl2!

f "x# ! !"

f"x#

lim
xl!1

f"x# ! "

x l !1f"x#

f

4

x ! $ %!2
y ! %!2y ! !%!2

lim
xl "

tan!1x !
%

2
lim
xl!"

tan!1x ! !
%

2

y ! tan!1x

lim
xl "

x 2 ! 1
x 2 # 1

! 1

FIGURE 4 
y=tan–!x

y

0
x

π
2

_ π
2

FIGURE 5 

0 x

y

2

2
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SECTION 2.6 LIMITS AT INFINITY;  HORIZONTAL ASYMPTOTES 133

It follows that the line (the -axis) is a horizontal asymptote of the curve .
(This is an equilateral hyperbola; see Figure 6.)

Most of the Limit Laws that were given in Section 2.3 also hold for limits at infinity. It
can be proved that the Limit Laws listed in Section 2.3 (with the exception of Laws 9 and
10) are also valid if “ ” is replaced by “ ” or “ .” In particular, if we
combine Laws 6 and 11 with the results of Example 2, we obtain the following important
rule for calculating limits.

Theorem If is a rational number, then

If is a rational number such that is defined for all x, then

Evaluate

and indicate which properties of limits are used at each stage.

SOLUTION As becomes large, both numerator and denominator become large, so it isn’t
obvious what happens to their ratio. We need to do some preliminary algebra. 

To evaluate the limit at infinity of any rational function, we first divide both the
numerator and denominator by the highest power of that occurs in the denominator.
(We may assume that , since we are interested only in large values of .) In this
case the highest power of in the denominator is , so we have

(by Limit Law 5)

(by 1, 2, and 3)

(by 7 and Theorem 5)

lim
x l!

3x 2 " x " 2
5x 2 # 4x # 1

! lim
x l!

3x2 " x " 2
x 2

5x2 # 4x # 1
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1
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134 CHAPTER 2 LIMITS AND DERIVATIVES

1

y=0.6

x

y

0

FIGURE 7

y= 3≈-x-2
5≈+4x+1

A similar calculation shows that the limit as is also . Figure 7 illustrates the
results of these calculations by showing how the graph of the given rational function
approaches the horizontal asymptote .

Find the horizontal and vertical asymptotes of the graph of the function

SOLUTION Dividing both numerator and denominator by and using the properties of
limits, we have 

(since for )

Therefore the line is a horizontal asymptote of the graph of .
In computing the limit as , we must remember that for , we have

. So when we divide the numerator by , for we get

Therefore

Thus the line is also a horizontal asymptote.
A vertical asymptote is likely to occur when the denominator, , is 0, that is,

when . If is close to and , then the denominator is close to 0 and 
is positive. The numerator is always positive, so is positive. Therefore

If is close to but , then and so is large negative. Thus

The vertical asymptote is . All three asymptotes are shown in Figure 8.

1
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lim
xl"#

s2x 2 ! 1
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1
x 2
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5
x
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s2 ! 0
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!
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!
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x 2
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5
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!
!lim

xl #
2 ! lim
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1
x 2
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3 " 5 lim
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1
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x $ 0sx 2 ! xlim
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s2x 2 ! 1
3x " 5
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1
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5
x

x l "# 3
5

EXAMPLE 4
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3
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3

5
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3
5
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3
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FIGURE 8 

y= œ„„„„„„
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x

y
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SECTION 2.6 LIMITS AT INFINITY;  HORIZONTAL ASYMPTOTES 135

Compute .

SOLUTION Because both and x are large when x is large, it’s difficult to see
what happens to their difference, so we use algebra to rewrite the function. We first mul-
tiply numerator and denominator by the conjugate radical:

Notice that the denominator of this last expression becomes large as
( it’s bigger than ). So

Figure 9 illustrates this result.

Evaluate .

SOLUTION If we let , we know that as . Therefore, by the 
second equation in , we have

The graph of the natural exponential function has the line y ! 0 (the x-axis) as a
horizontal asymptote. (The same is true of any exponential function with base .) In
fact, from the graph in Figure 10 and the corresponding table of values, we see that

Notice that the values of approach 0 very rapidly.

4

y=´

x0

1

y

1
FIGURE 10

ex

lim
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ex ! 06

a # 1
y ! ex

EXAMPLE 6
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arctan! 1
x ! 2" ! lim

tl "
arctan t !

%

2

x l 2$t l "t ! 1#$ x ! 2%

lim
xl2$

arctan! 1
x ! 2"

EXAMPLE 5 lim
xl"

(sx 2 $ 1 ! x)

lim
xl"

(sx 2 $ 1 ! x) ! lim
xl"

1
sx 2 $ 1 $ x

! 0

xx l "
(sx 2 $ 1 $ x)

! lim
xl"

$ x 2 $ 1% ! x 2

sx 2 $ 1 $ x
! lim

xl"

1
sx 2 $ 1 $ x

lim
xl"

(sx 2 $ 1 ! x) ! lim
xl"

(sx 2 $ 1 ! x) sx 2 $ 1 $ x
sx 2 $ 1 $ x

sx 2 $ 1

x

0 1.00000
!1 0.36788
!2 0.13534
!3 0.04979
!5 0.00674
!8 0.00034

!10 0.00005

e x

We can think of the given function as having
a denominator of 1.

FIGURE 9 
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136 CHAPTER 2 LIMITS AND DERIVATIVES

Evaluate .

SOLUTION If we let , we know that as . Therefore, by ,

(See Exercise 75.)

Evaluate .

SOLUTION As x increases, the values of sin x oscillate between 1 and !1 infinitely often
and so they don’t approach any definite number. Thus does not exist.

Infinite Limits at Infinity
The notation

is used to indicate that the values of become large as becomes large. Similar mean-
ings are attached to the following symbols:

Find and .

SOLUTION When becomes large, also becomes large. For instance,

In fact, we can make as big as we like by taking large enough. Therefore we can
write

Similarly, when is large negative, so is . Thus

These limit statements can also be seen from the graph of in Figure 11.

Looking at Figure 10 we see that

but, as Figure 12 demonstrates, becomes large as at a much faster rate than
.

Find .

| SOLUTION It would be wrong to write

The Limit Laws can’t be applied to infinite limits because is not a number 
( can’t be defined). However, we can write

because both and become arbitrarily large and so their product does too.

6

EXAMPLE 10
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lim
xl"

!x 2 ! x" ! lim
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lim
xl"

ex ! "
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EXAMPLE 8

lim xl" sin x
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sin x

EXAMPLE 7v

lim
xl0!

e 1#x ! lim
tl !"

e t ! 0

x l 0!t l !"t ! 1#x

lim
xl0!

e 1#x

The problem-solving strategy for 
Examples 6 and 7 is introducing something
extra (see page 75). Here, the something extra,
the auxiliary aid, is the new variable .

PS

t

FIGURE 11
lim x#=`,   lim  x#=_`
x    ` x    _`

x

y

0

y=˛

x0

100

y

1

y=˛

y=´

FIGURE 12
´ is much larger than ˛
when x is large.
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SECTION 2.6 LIMITS AT INFINITY;  HORIZONTAL ASYMPTOTES 137

Find .

SOLUTION As in Example 3, we divide the numerator and denominator by the highest
power of in the denominator, which is just x :

because and as .

The next example shows that by using infinite limits at infinity, together with intercepts,
we can get a rough idea of the graph of a polynomial without having to plot a large number
of points.

Sketch the graph of by finding its inter-
cepts and its limits as and as .

SOLUTION The -intercept is and the -intercepts are 
found by setting : . Notice that since is positive, the function
doesn’t change sign at ; thus the graph doesn’t cross the -axis at . The graph crosses
the axis at and .

When is large positive, all three factors are large, so

When is large negative, the first factor is large positive and the second and third factors
are both large negative, so 

Combining this information, we give a rough sketch of the graph in Figure 13.

Precise Definitions
Definition 1 can be stated precisely as follows.

Definition Let be a function defined on some interval . Then

means that for every there is a corresponding number such that

if    

In words, this says that the values of can be made arbitrarily close to (within a 
distance , where is any positive number) by taking sufficiently large (larger than ,
where depends on ). Graphically it says that by choosing large enough (larger than
some number ) we can make the graph of lie between the given horizontal lines fN

x!N
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Lf !x"

# f !x" " L # # !thenx $ N
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lim
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0 x_1
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138 CHAPTER 2 LIMITS AND DERIVATIVES

and as in Figure 14. This must be true no matter how small we
choose . Figure 15 shows that if a smaller value of is chosen, then a larger value of 
may be required.

Similarly, a precise version of Definition 2 is given by Definition 8, which is illustrated
in Figure 16.

Definition Let be a function defined on some interval . Then 

means that for every there is a corresponding number such that

then    

In Example 3 we calculated that 

In the next example we use a graphing device to relate this statement to Definition 7 with
and .

8
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! & 0 N
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∑
∑
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! ! N
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Use a graph to find a number such that 

then    

SOLUTION We rewrite the given inequality as

We need to determine the values of for which the given curve lies between the horizon-
tal lines and . So we graph the curve and these lines in Figure 17. Then
we use the cursor to estimate that the curve crosses the line when . To
the right of this number it seems that the curve stays between the lines and

. Rounding to be safe, we can say that

then    

In other words, for we can choose (or any larger number) in Definition 7.

Use Definition 7 to prove that .

SOLUTION Given , we want to find such that

if    then    

In computing the limit we may assume that . Then . Let’s
choose . So

if    then    

Therefore, by Definition 7,

Figure 18 illustrates the proof by showing some values of and the corresponding val-
ues of .

FIGURE 18

x

y

0 N=5
∑=0.2

x

y

0 N=1

∑=1

x

y

0 N=10
∑=0.1

EXAMPLE 14

N
!

lim
xl "

1
x

! 0

! 1
x

# 0 ! !
1
x

$ !x % N !
1
!

N ! 1"!
1"x $ ! &? x % 1"!x % 0

! 1
x

# 0 ! $ !x % N

N! % 0

lim
xl "

1
x

! 0

EXAMPLE 13

N ! 7! ! 0.1

! 3x 2 # x # 2
5x 2 & 4x & 1

# 0.6 ! $ 0.1x % 7if

y ! 0.7
y ! 0.5

x # 6.7y ! 0.5
y ! 0.7y ! 0.5

x

0.5 $
3x 2 # x # 2

5x 2 & 4x & 1
$ 0.7

! 3x 2 # x # 2
5x 2 & 4x & 1

# 0.6 ! $ 0.1x % Nif

N

SECTION 2.6 LIMITS AT INFINITY;  HORIZONTAL ASYMPTOTES 139

In Module 2.4/2.6 you can explore the 
precise definition of a limit both graphically and
numerically.

TEC

FIGURE 17

1

0 15

y=0.7
y=0.5

y= 3≈-x-2
5≈+4x+1

97909_02_ch02_p130-139.qk:97909_02_ch02_p130-139  9/21/10  9:23 AM  Page 139

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).  
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



140 CHAPTER 2 LIMITS AND DERIVATIVES

1. Explain in your own words the meaning of each of the 
following.
(a) (b)

2. (a) Can the graph of intersect a vertical asymptote?
Can it intersect a horizontal asymptote? Illustrate by
sketching graphs.

(b) How many horizontal asymptotes can the graph of
have? Sketch graphs to illustrate the possibilities.

3. For the function whose graph is given, state the following.
(a) (b)

(c) (d)

(e) The equations of the asymptotes

4. For the function whose graph is given, state the following.
(a) (b)

(c) (d)

lim
xl !"

f !x" ! 3lim
xl "

f !x" ! 5
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t!x"lim
xl 0
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1 x

y

1
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xl3

f !x"

f

y ! f !x"

y ! f !x"

(e) (f ) The equations of the asymptotes

5–10 Sketch the graph of an example of a function that 
satisfies all of the given conditions.

5. ,  ,  

6. ,  ,  ,  

,  ,  

7.

8. ,  ,  ,  is odd

9.

10. is evenff !0" ! 0,lim
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f !x" ! !5lim
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f !x" ! 5lim
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f

1 x
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1

2.6 Exercises

Finally we note that an infinite limit at infinity can be defined as follows. The geometric
illustration is given in Figure 19.

Definition Let be a function defined on some interval . Then

means that for every positive number there is a corresponding positive number
N such that

then    

Similar definitions apply when the symbol is replaced by . (See Exercise 74.)

9

!""

f !x" $ Mx $ Nif

M

lim
xl "

f !x" ! "

!a, ""f

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

FIGURE 19
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SECTION 2.6 LIMITS AT INFINITY;  HORIZONTAL ASYMPTOTES 141

; 11. Guess the value of the limit

by evaluating the function for
and . Then use a graph of 

to support your guess.

; 12. (a) Use a graph of

to estimate the value of correct to two 
decimal places.

(b) Use a table of values of to estimate the limit to 
four decimal places.

13–14 Evaluate the limit and justify each step by indicating the
appropriate properties of limits.

13. 14.

15–38 Find the limit or show that it does not exist.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38. lim
xl 0!

tan"1!ln x"lim
xl #

!e"2x cos x"
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xl #

1 " e x

1 ! 2e x
lim
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sin2x
x 2 ! 1
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e 3x " e"3x

e 3x ! e"3xlim
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1 ! x 6

x 4 ! 1
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!x 4 ! x 5 "
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!e"x ! 2 cos 3x"lim
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x 4 " 3x 2 ! x
x 3 " x ! 2
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sx 2 ! 1lim
xl#

(sx 2 ! ax " sx2 ! bx )
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xl"#

(x ! sx 2 ! 2x )lim
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(s9x 2 ! x " 3x)
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s9x 6 " x
x 3 ! 1

lim
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x 3 ! 1

lim
xl #

x 2

sx 4 ! 1
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2t " t 2

lim
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4x 3 ! 6x 2 " 2
2x 3 " 4x ! 5
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x " 2
x 2 ! 1

lim
xl #

1 " x 2

x 3 " x ! 1
lim
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3x " 2
2x ! 1
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$12x 3 " 5x ! 2

1 ! 4x 2 ! 3x 3lim
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3x2 " x ! 4
2x2 ! 5x " 8

f !x"

lim xl # f !x"

f !x" ! %1 "
2
x&x

lim
xl#

x 2

2x

f1004, 5, 6, 7, 8, 9, 10, 20, 50,
x ! 0, 1, 2, 3,f !x" ! x 2#2x

; 39. (a) Estimate the value of

by graphing the function .
(b) Use a table of values of to guess the value of the

limit.
(c) Prove that your guess is correct.

; 40. (a) Use a graph of

to estimate the value of to one decimal place.
(b) Use a table of values of to estimate the limit to four

decimal places.
(c) Find the exact value of the limit.

41–46 Find the horizontal and vertical asymptotes of each curve.
If you have a graphing device, check your work by graphing the
curve and estimating the asymptotes.

41. 42.

43. 44.

45. 46.

; 47. Estimate the horizontal asymptote of the function

by graphing for . Then calculate the
equation of the asymptote by evaluating the limit. How do
you explain the discrepancy?

; 48. (a) Graph the function

How many horizontal and vertical asymptotes do you
observe? Use the graph to estimate the values of the 
limits

and    

(b) By calculating values of , give numerical estimates 
of the limits in part (a).

(c) Calculate the exact values of the limits in part (a). Did
you get the same value or different values for these two
limits? [In view of your answer to part (a), you might
have to check your calculation for the second limit.]
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142 CHAPTER 2 LIMITS AND DERIVATIVES

49. Find a formula for a function that satisfies the following 
conditions:

,  ,  ,

,  

50. Find a formula for a function that has vertical asymptotes
and and horizontal asymptote .

51. A function is a ratio of quadratic functions and has a ver-
tical asymptote and just one -intercept, . It is
known that has a removable discontinuity at and

. Evaluate
(a) (b)

52–56 Find the limits as and as . Use this infor-
mation, together with intercepts, to give a rough sketch of the
graph as in Example 12.

52. 53.

54.

55.

56.

57. (a) Use the Squeeze Theorem to evaluate .

; (b) Graph . How many times does the graph
cross the asymptote?

; 58. By the end behavior of a function we mean the behavior of
its values as and as .
(a) Describe and compare the end behavior of the functions

by graphing both functions in the viewing rectangles
by and by .

(b) Two functions are said to have the same end behavior if
their ratio approaches 1 as . Show that P and Q
have the same end behavior.

59. Let and be polynomials. Find

if the degree of is (a) less than the degree of and 
(b) greater than the degree of .

60. Make a rough sketch of the curve ( an integer) 
for the following five cases:
(i) (ii) , odd

(iii) , even (iv) , odd
(v) , even

Then use these sketches to find the following limits.
(a) (b)

(c) (d)

f !x" ! !sin x"#x

lim
x l!"

x nlim
x l"

x n

lim
x l0!

x nlim
x l0#

x n

nn $ 0
nn $ 0nn % 0
nn % 0n ! 0

ny ! x n

Q
QP

lim
x l "

P!x"
Q!x"

QP

x l "

$!10,000, 10,000%$!10, 10%$!2, 2%$!2, 2%

Q!x" ! 3x 5P!x" ! 3x 5 ! 5x 3 # 2x

x l !"x l "

lim
x l "

sin x
x

y ! x 2!x 2 ! 1"2!x # 2"

y ! !3 ! x"!1 # x"2!1 ! x"4

y ! x 3!x # 2"2!x ! 1"

y ! x 4 ! x6y ! 2x 3 ! x 4

x l !"x l "

f !2" ! 0lim
x l0

f !x" ! !"lim
x l &"

f !x" ! 0

f

lim
x l "

f !x"f !0"
limx l!1 f !x" ! 2

x ! !1f
x ! 1xx ! 4

f

y ! 1x ! 3x ! 1

lim
x l3#

f !x" ! !"lim
x l3!

f !x" ! "

61. Find if, for all ,

62. (a) A tank contains 5000 L of pure water. Brine that contains
30 g of salt per liter of water is pumped into the tank at a
rate of 25 L#min. Show that the concentration of salt after 

minutes (in grams per liter) is

(b) What happens to the concentration as ?

63. In Chapter 9 we will be able to show, under certain assump -
tions, that the velocity of a falling raindrop at time t is

where t is the acceleration due to gravity and is the 
terminal velocity of the raindrop.
(a) Find .

; (b) Graph if and . How long does
it take for the velocity of the raindrop to reach 99% of its
terminal velocity?

; 64. (a) By graphing and y ! 0.1 on a common screen,
discover how large you need to make x so that .

(b) Can you solve part (a) without using a graphing device?

; 65. Use a graph to find a number such that

if    

; 66. For the limit 

illustrate Definition 7 by finding values of that correspond
to and .

; 67. For the limit 

illustrate Definition 8 by finding values of that correspond
to and .

; 68. For the limit 

illustrate Definition 9 by finding a value of that corre-
sponds to .M ! 100

N

lim
x l "

2x # 1
sx # 1

! "

' ! 0.5 ' ! 0.1
N

lim
x l!"

s4x 2 # 1
x # 1

! !2

' ! 0.5 ' ! 0.1
N

lim
x l "

s4x 2 # 1
x # 1

! 2

x % N then & 3x 2 # 1
2x 2 # x # 1

! 1.5 & $ 0.05

N

e !x#10 $ 0.1
y ! e !x#10

v!t" v* ! 1 m#s t ! 9.8 m#s2

lim t l " v!t"

v*

v!t" ! v*!1 ! e !t t#v*"

v!t"

t l "

C!t" !
30t

200 # t

t

10e x ! 21
2e x $ f !x" $

5sx
sx ! 1

limx l " f !x" x % 1
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SECTION 2.7 DERIVATIVES AND RATES OF CHANGE 143

69. (a) How large do we have to take so that ?
(b) Taking in Theorem 5, we have the statement

Prove this directly using Definition 7.

70. (a) How large do we have to take so that ?
(b) Taking in Theorem 5, we have the statement

Prove this directly using Definition 7.

71. Use Definition 8 to prove that .lim
xl!"

1
x

! 0

lim
xl "

1
sx ! 0

r ! 1
2

x 1!sx # 0.0001

lim
xl "

1
x 2 ! 0

r ! 2
x 1!x 2 # 0.0001 72. Prove, using Definition 9, that .

73. Use Definition 9 to prove that .

74. Formulate a precise definition of 

Then use your definition to prove that

75. Prove that

and

if these limits exist.

lim
xl!"

"1 $ x 3 # ! !"

lim
xl!"

f "x# ! !"

lim
xl "

e x ! "

lim
xl "

x 3 ! "

lim
xl !"

f "x# ! lim
tl0!

f "1!t#

lim
xl "

f "x# ! lim
tl0$

f "1!t#

The problem of finding the tangent line to a curve and the problem of finding the velocity
of an object both involve finding the same type of limit, as we saw in Section 2.1. This spe-
cial type of limit is called a derivative and we will see that it can be interpreted as a rate of
change in any of the sciences or engineering.

Tangents
If a curve has equation and we want to find the tangent line to at the point

, then we consider a nearby point , where , and compute the slope
of the secant line :

Then we let approach along the curve by letting approach . If approaches a
number , then we define the tangent t to be the line through with slope . (This
amounts to saying that the tangent line is the limiting position of the secant line as
approaches . See Figure 1.)

Definition The tangent line to the curve at the point is the
line through with slope

provided that this limit exists.

In our first example we confirm the guess we made in Example 1 in Section 2.1.

m ! lim
xl a

f "x# ! f"a#
x ! a

P
P"a, f"a##y ! f"x#1

P
QPQ

mPm
mPQaxCPQ

mPQ !
f"x# ! f"a#
x ! a

PQ
x " aQ"x, f"x##P"a, f"a##

Cy ! f"x#C

2.7 Derivatives and Rates of Change

FIGURE 1 

0 x

y

P

t
Q

Q
Q

0 x

y

a x

P{a, f(a)}
ƒ-f(a)

x-a

Q{x, ƒ}
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144 CHAPTER 2 LIMITS AND DERIVATIVES

Find an equation of the tangent line to the parabola at the 
point .

SOLUTION Here we have and , so the slope is

Using the point-slope form of the equation of a line, we find that an equation of the
tangent line at is

We sometimes refer to the slope of the tangent line to a curve at a point as the slope of
the curve at the point. The idea is that if we zoom in far enough toward the point, the curve
looks almost like a straight line. Figure 2 illustrates this procedure for the curve in
Example 1. The more we zoom in, the more the parabola looks like a line. In other words,
the curve becomes almost indistinguishable from its tangent line.

There is another expression for the slope of a tangent line that is sometimes easier to
use. If , then and so the slope of the secant line is

(See Figure 3 where the case is illustrated and is to the right of . If it happened
that , however, would be to the left of .)

Notice that as approaches , approaches (because ) and so the expres-
sion for the slope of the tangent line in Definition 1 becomes

Find an equation of the tangent line to the hyperbola at the 
point .!3, 1"
EXAMPLE 2 y ! 3#x

2 m ! lim
hl 0

f !a ! h" " f !a"
h

x a h 0 h ! x " a
h # 0 Q P

h $ 0 Q P

mPQ !
f !a ! h" " f !a"

h

h ! x " a x ! a ! h PQ

FIGURE 2 Zooming in toward the point (1, 1) on the parabola y=≈

(1, 1)

2

0 2

(1, 1)

1.5

0.5 1.5

(1, 1)

1.1

0.9 1.1

y ! x 2

y " 1 ! 2!x " 1" or y ! 2x " 1

!1, 1"

! lim
xl1

!x ! 1" ! 1 ! 1 ! 2

! lim
xl1

!x " 1"!x ! 1"
x " 1

m ! lim
xl1

f !x" " f !1"
x " 1

! lim
xl1

x 2 " 1
x " 1

a ! 1 f !x" ! x 2

P!1, 1"
v EXAMPLE 1 y ! x 2

Point-slope form for a line through the 
point with slope :

y " y1 ! m!x " x1"
m!x1, y1"

Visual 2.7 shows an animation of 
Figure 2.
TEC

FIGURE 3 

0 x

y

a a+h

P{a, f(a)}
h

Q{a+h, f(a+h)}
t

f(a+h)-f(a)
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SECTION 2.7 DERIVATIVES AND RATES OF CHANGE 145

SOLUTION Let . Then the slope of the tangent at is

Therefore an equation of the tangent at the point is 

which simplifies to

The hyperbola and its tangent are shown in Figure 4.

Velocities
In Section 2.1 we investigated the motion of a ball dropped from the CN Tower and defined
its velocity to be the limiting value of average velocities over shorter and shorter time 
periods.

In general, suppose an object moves along a straight line according to an equation of
motion , where is the displacement (directed distance) of the object from the ori-
gin at time . The function that describes the motion is called the position function
of the object. In the time interval from to the change in position is

. (See Figure 5.) The average velocity over this time interval is

which is the same as the slope of the secant line in Figure 6.
Now suppose we compute the average velocities over shorter and shorter time intervals

. In other words, we let approach . As in the example of the falling ball, we 
define the velocity (or instantaneous velocity) at time to be the limit of these 
average velocities:

This means that the velocity at time is equal to the slope of the tangent line at (com-
pare Equations 2 and 3).

Now that we know how to compute limits, let’s reconsider the problem of the fall-
ing ball.

Suppose that a ball is dropped from the upper observation deck of the
CN Tower, 450 m above the ground.
(a) What is the velocity of the ball after 5 seconds?
(b) How fast is the ball traveling when it hits the ground?

SOLUTION We will need to find the velocity both when and when the ball hits the
ground, so it’s efficient to start by finding the velocity at a general time . Using the 

t ! 5

v EXAMPLE 3

t ! a P

3 v!a" ! lim
hl 0

f !a ! h" " f !a"
h

t ! av!a"
#a, a ! h$ h 0

PQ

average velocity !
displacement

time
!

f !a ! h" " f !a"
h

f !a ! h" " f !a"
t ! a t ! a ! h

t f
s ! f !t" s

x ! 3y " 6 ! 0

y " 1 ! "1
3 !x " 3"

!3, 1"

! lim
hl 0

"h
h!3 ! h"

! lim
hl 0

"
1

3 ! h
! "

1
3

m ! lim
hl 0

f !3 ! h" " f !3"
h

! lim
hl 0

3
3 ! h

" 1

h
! lim

hl 0

3 " !3 ! h"
3 ! h
h

f !x" ! 3%x !3, 1"

FIGURE 4

y=

(3, 1)

x+3y-6=0

x

y

0

3
x

0

P{a, f(a)}

Q{a+h, f(a+h)}

h

a+ha

s

t

mPQ=
! average velocity

FIGURE 6

FIGURE 5

0 s
f(a+h)-f(a)

position at
time t=a

position at
time t=a+h

f(a)

f(a+h)

f(a+h)-f(a)
h 

Recall from Section 2.1: The dis tance 
(in meters) fallen after seconds is .4.9t 2t
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146 CHAPTER 2 LIMITS AND DERIVATIVES

equation of motion , we have

(a) The velocity after 5 s is m!s.
(b) Since the observation deck is 450 m above the ground, the ball will hit the ground at
the time when , that is,

This gives

The velocity of the ball as it hits the ground is therefore

Derivatives
We have seen that the same type of limit arises in finding the slope of a tangent line (Equa-
tion 2) or the velocity of an object (Equation 3). In fact, limits of the form

arise whenever we calculate a rate of change in any of the sciences or engineering, such 
as a rate of reaction in chemistry or a marginal cost in economics. Since this type of limit
occurs so widely, it is given a special name and notation.

Definition The derivative of a function at a number , denoted by , is

if this limit exists.

If we write , then we have and approaches if and only if 
approaches . Therefore an equivalent way of stating the definition of the derivative, as we
saw in finding tangent lines, is

Find the derivative of the function at the number .v EXAMPLE 4 f"x# ! x 2 ! 8x " 9 a

5 f #"a# ! lim
xl a

f"x# ! f"a#
x ! a

a
x ! a " h h ! x ! a h 0 x

f #"a# ! lim
hl0

f"a " h# ! f"a#
h

4 f a f #"a#

lim
hl0

f"a " h# ! f"a#
h

v"t1# ! 9.8t1 ! 9.8$450
4.9

% 94 m!s

t12 !
450
4.9

and t1 ! $450
4.9

% 9.6 s

4.9t12 ! 450

t1 s"t1# ! 450

v"5# ! "9.8#"5# ! 49

! lim
hl 0

4.9"2a " h# ! 9.8a

! lim
hl 0

4.9"a 2 " 2ah " h 2 ! a 2 #
h

! lim
hl 0

4.9"2ah " h 2 #
h

v"a# ! lim
hl 0

f"a " h# ! f"a#
h

! lim
hl 0

4.9"a " h#2 ! 4.9a 2

h

s ! f"t# ! 4.9t 2

is read “ prime of .”aff #"a#
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SECTION 2.7 DERIVATIVES AND RATES OF CHANGE 147

SOLUTION From Definition 4 we have

We defined the tangent line to the curve at the point to be the line that
passes through and has slope given by Equation 1 or 2. Since, by Defini tion 4, this is
the same as the derivative , we can now say the following.

The tangent line to at is the line through whose slope is
equal to , the derivative of at .

If we use the point-slope form of the equation of a line, we can write an equation of the
tangent line to the curve at the point :

Find an equation of the tangent line to the parabola at
the point .

SOLUTION From Example 4 we know that the derivative of at the
number is . Therefore the slope of the tangent line at is

. Thus an equation of the tangent line, shown in Figure 7, is

or    

Rates of Change
Suppose is a quantity that depends on another quantity . Thus is a function of and we
write . If changes from to , then the change in (also called the increment
of ) is

and the corresponding change in is

The difference quotient

!y
!x

!
f !x2" " f !x1"
x2 " x1

!y ! f !x2" " f !x1"

y

!x ! x2 " x1

x
y ! f !x" x x1 x2 x

y x y x

y " !" 6" ! !" 2"!x " 3" y ! " 2x

f #!3" ! 2!3" " 8 ! " 2
a f #!a" ! 2a " 8 !3, " 6"

f !x" ! x 2 " 8x $ 9

!3, " 6"
v EXAMPLE 5 y ! x 2 " 8x $ 9

y " f !a" ! f #!a"!x " a"

y ! f !x" !a, f !a""

f #!a" f a
y ! f !x" !a, f !a"" !a, f !a""

f #!a"
P m

y ! f !x" P!a, f !a""

! 2a " 8

! lim
hl0

2ah $ h 2 " 8h
h

! lim
hl0

!2a $ h " 8"

! lim
hl0

a 2 $ 2ah $ h 2 " 8a " 8h $ 9 " a 2 $ 8a " 9
h

! lim
hl0

#!a $ h"2 " 8!a $ h" $ 9$ " #a 2 " 8a $ 9$
h

f #!a" ! lim
hl0

f !a $ h" " f !a"
h

y=≈-8x+9

(3, _6)

y=_2x

FIGURE 7 

0 x

y
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148 CHAPTER 2 LIMITS AND DERIVATIVES

is called the average rate of change of ywith respect to x over the interval and can
be interpreted as the slope of the secant line in Figure 8.

By analogy with velocity, we consider the average rate of change over smaller and
smaller intervals by letting approach and therefore letting approach . The limit of
these average rates of change is called the (instantaneous) rate of change of ywith respect
to x at , which is interpreted as the slope of the tangent to the curve at

:

We recognize this limit as being the derivative .
We know that one interpretation of the derivative is as the slope of the tangent line

to the curve when . We now have a second interpretation:

The derivative is the instantaneous rate of change of with respect 
to when .

The connection with the first interpretation is that if we sketch the curve , then
the instantaneous rate of change is the slope of the tangent to this curve at the point where

. This means that when the derivative is large (and therefore the curve is steep, as 
at the point in Figure 9), the -values change rapidly. When the derivative is small, the
curve is relatively flat (as at point ) and the -values change slowly.

In particular, if is the position function of a particle that moves along a straight
line, then is the rate of change of the displacement with respect to the time . In 
other words, is the velocity of the particle at time . The speed of the particle is
the absolute value of the velocity, that is, 

In the next example we discuss the meaning of the derivative of a function that is
defined verbally.

A manufacturer produces bolts of a fabric with a fixed width. The cost of
producing x yards of this fabric is dollars.
(a) What is the meaning of the derivative ? What are its units?
(b) In practical terms, what does it mean to say that ?
(c) Which do you think is greater, or ? What about ?

SOLUTION
(a) The derivative is the instantaneous rate of change of C with respect to x; that
is, means the rate of change of the production cost with respect to the number of
yards produced. (Economists call this rate of change the marginal cost. This idea is dis-
cussed in more detail in Sections 3.7 and 4.7.)

Because

the units for are the same as the units for the difference quotient . Since 
is measured in dollars and in yards, it follows that the units for are dollars

per yard.
!C !x f "!x"

f "!x" !C#!x

f "!x" ! lim
!x l 0

!C
!x

f "!x"
f "!x"

f "!50" f "!500" f "!5000"
f "!1000" ! 9

f "!x"
C ! f !x"

v EXAMPLE 6

$ f "!a" $.
f "!a" t ! a

f "!a" s t
s ! f !t"

Q y
P y

x ! a

y ! f !x"

x x ! a
f "!a" y ! f !x"

y ! f !x" x ! a
f "!a"

f "!x1"

6 instantaneous rate of change ! lim
!x l 0

!y
!x

! lim
x2 l x1

f !x2" # f !x1"
x2 # x1

P!x1, f !x1""
x ! x1 y ! f !x"

x2 x1 !x 0

PQ
%x1, x2&

average rate of change ! mPQ 
instantaneous rate of change !

slope of tangent at P  

FIGURE 8 

0 x

y

⁄ ¤

Q{¤, ‡}

Îx

ÎyP{⁄, fl}

FIGURE 9
The y-values are changing rapidly
at P and slowly at Q.

P

Q

x

y

97909_02_ch02_p140-149.qk:97909_02_ch02_p140-149  9/21/10  9:27 AM  Page 148

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).  
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 2.7 DERIVATIVES AND RATES OF CHANGE 149

(b) The statement that means that, after 1000 yards of fabric have been
manufactured, the rate at which the production cost is increasing is $9!yard. (When

, C is increasing 9 times as fast as x.)
Since is small compared with , we could use the approximation

and say that the cost of manufacturing the 1000th yard (or the 1001st) is about $9.
(c) The rate at which the production cost is increasing (per yard) is probably lower
when x ! 500 than when x ! 50 (the cost of making the 500th yard is less than the cost
of the 50th yard) because of economies of scale. (The manufacturer makes more efficient
use of the fixed costs of production.) So

But, as production expands, the resulting large-scale operation might become inefficient
and there might be overtime costs. Thus it is possible that the rate of increase of costs
will eventually start to rise. So it may happen that

In the following example we estimate the rate of change of the national debt with respect
to time. Here the function is defined not by a formula but by a table of values.

Let be the US national debt at time t. The table in the margin gives
approximate values of this function by providing end of year estimates, in billions of dol-
lars, from 1980 to 2005. Interpret and estimate the value of .

SOLUTION The derivative means the rate of change of D with respect to t when
, that is, the rate of increase of the national debt in 1990.

According to Equation 5,

So we compute and tabulate values of the difference quotient (the average rates of
change) as follows.

From this table we see that lies somewhere between 257.48 and 348.14 billion
dollars per year. [Here we are making the reasonable assumption that the debt didn’t
fluctuate wildly between 1980 and 2000.] We estimate that the rate of increase of the
national debt of the United States in 1990 was the average of these two numbers, namely

Another method would be to plot the debt function and estimate the slope of the tan-
gent line when .

EXAMPLE 7v

t ! 1990

D!"1990# $ 303 billion dollars per year

D!"1990#

D!"1990# ! lim
tl1990

D"t# " D"1990#
t " 1990

t ! 1990
D!"1990#

D!"1990#

D"t#

f !"5000# # f !"500#

f !"50# # f !"500#

f !"1000# $
$C
$x

!
$C
1

! $C

x ! 1000$x ! 1
x ! 1000

f !"1000# ! 9

Here we are assuming that the cost function 
is well behaved; in other words, doesn’t
oscillate rapidly near .x ! 1000

C"x#

t

1980 930.2
1985 1945.9
1990 3233.3
1995 4974.0
2000 5674.2
2005 7932.7

D"t#

t

1980 230.31
1985 257.48
1995 348.14
2000 244.09
2005 313.29

D"t# " D"1990#
t " 1990

A Note on Units
The units for the average rate of change 
are the units for divided by the units for ,
namely, billions of dollars per year. The instan-
 taneous rate of change is the limit of the aver-
age rates of change, so it is measured in the
same units: billions of dollars per year.

$t$D
$D!$t
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150 CHAPTER 2 LIMITS AND DERIVATIVES

1. A curve has equation .
(a) Write an expression for the slope of the secant line

through the points and .
(b) Write an expression for the slope of the tangent line at P.

; 2. Graph the curve in the viewing rectangles by
, by , and by .

What do you notice about the curve as you zoom in toward
the point ?

3. (a) Find the slope of the tangent line to the parabola
at the point 

(i) using Definition 1 (ii) using Equation 2
(b) Find an equation of the tangent line in part (a).

; (c) Graph the parabola and the tangent line. As a check on
your work, zoom in toward the point until the
parabola and the tangent line are indistinguishable.

4. (a) Find the slope of the tangent line to the curve
at the point 

(i) using Definition 1 (ii) using Equation 2
(b) Find an equation of the tangent line in part (a).

; (c) Graph the curve and the tangent line in successively
smaller viewing rectangles centered at until the
curve and the line appear to coincide.

5–8 Find an equation of the tangent line to the curve at the 
given point.

5. ,  6. ,  

7. 8. ,  

9. (a) Find the slope of the tangent to the curve
at the point where .x ! ay ! 3 ! 4x 2 " 2x 3

!1, 1"y !
2x ! 1
x ! 2

(1, 1"y ! sx ,

!2, 3"y ! x 3 " 3x ! 1!2, "4"y ! 4x " 3x 2

!1, 0"

!1, 0"y ! x " x 3

!1, 3"

!1, 3"y ! 4x " x 2

!0, 1"

#0.9, 1.1$#"0.1, 0.1$#0.5, 1.5$#"0.5, 0.5$#0, 2$
#"1, 1$y ! e x

Q!x, f !x""P!3, f !3""

y ! f !x" (b) Find equations of the tangent lines at the points 
and .

; (c) Graph the curve and both tangents on a common screen.

10. (a) Find the slope of the tangent to the curve at
the point where .

(b) Find equations of the tangent lines at the points 
and .

; (c) Graph the curve and both tangents on a common screen.

11. (a) A particle starts by moving to the right along a horizon-
tal line; the graph of its position function is shown.
When is the particle moving to the right? Moving to the
left? Standing still?

(b) Draw a graph of the velocity function.

12. Shown are graphs of the position functions of two runners,
and , who run a 100-m race and finish in a tie.

s (meters)

0 4 8 12

80

40

t (seconds)

A

B

BA

s (meters)

0 2 4 6

4

2

t (seconds)

(4, 1
2 )

!1, 1"
x ! a

y ! 1%sx

!2, 3"
!1, 5"

2.7 Exercises

In Examples 3, 6, and 7 we saw three specific examples of rates of change: the veloc-
ity of an object is the rate of change of displacement with respect to time; marginal cost is
the rate of change of production cost with respect to the number of items produced; the 
rate of change of the debt with respect to time is of interest in economics. Here is a small
sample of other rates of change: In physics, the rate of change of work with respect to time
is called power. Chemists who study a chemical reaction are interested in the rate of 
change in the concentration of a reactant with respect to time (called the rate of reaction).
A biologist is interested in the rate of change of the population of a colony of bacteria with
respect to time. In fact, the computation of rates of change is important in all of the natu-
ral sciences, in engineering, and even in the social sciences. Further examples will be given
in Section 3.7.

All these rates of change are derivatives and can therefore be interpreted as slopes of
tangents. This gives added significance to the solution of the tangent problem. Whenever 
we solve a problem involving tangent lines, we are not just solving a problem in geome-
try. We are also implicitly solving a great variety of problems involving rates of change in
science and engineering.

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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SECTION 2.7 DERIVATIVES AND RATES OF CHANGE 151

(a) Describe and compare how the runners run the race.
(b) At what time is the distance between the runners the 

greatest?
(c) At what time do they have the same velocity?

13. If a ball is thrown into the air with a velocity of 40 ft!s, its
height (in feet) after seconds is given by .
Find the velocity when .

14. If a rock is thrown upward on the planet Mars with a velocity
of , its height (in meters) after seconds is given by

.
(a) Find the velocity of the rock after one second.
(b) Find the velocity of the rock when .
(c) When will the rock hit the surface?
(d) With what velocity will the rock hit the surface?

15. The displacement (in meters) of a particle moving in a straight
line is given by the equation of motion , where is
measured in seconds. Find the velocity of the par ticle at times

, and .

16. The displacement (in meters) of a particle moving in a straight
line is given by , where is measured in 
seconds.
(a) Find the average velocity over each time interval:

(i) (ii)
(iii) (iv)

(b) Find the instantaneous velocity when .
(c) Draw the graph of as a function of and draw the secant

lines whose slopes are the average velocities in part (a) and
the tangent line whose slope is the instantaneous velocity in
part (b).

17. For the function t whose graph is given, arrange the following
numbers in increasing order and explain your reasoning:

18. Find an equation of the tangent line to the graph of at
if and .

19. If an equation of the tangent line to the curve at the
point where is , find and .

20. If the tangent line to at (4, 3) passes through the point
(0, 2), find and .

21. Sketch the graph of a function for which ,
, and .f !"2# ! "1f !"1# ! 0

f !"0# ! 3,f "0# ! 0f

f !"4#f "4#
y ! f "x#

f !"2#f "2#y ! 4x " 5a ! 2
y ! f "x#

t!"5# ! 4t"5# ! "3x ! 5
y ! t"x#

y=©

1 3 4_1 0 x2

y
0 t!""2# t!"0# t!"2# t!"4#

ts
t ! 4

$4, 4.5%$4, 5%
$3.5, 4%$3, 4%

ts ! t 2 " 8t # 18

t ! 3t ! a, t ! 1, t ! 2

ts ! 1!t 2

t ! a

H ! 10t " 1.86t 2
t10 m!s

t ! 2
y ! 40t " 16t 2t

22. Sketch the graph of a function for which
, , ,

, , and .

23. If , find and use it to find an equation of
the tangent line to the curve at the point .

24. If , find and use it to find an equation of the
tangent line to the curve at the point .

25. (a) If , find and use it to find an
equation of the tangent line to the curve
at the point .

; (b) Illustrate part (a) by graphing the curve and the tangent line
on the same screen.

26. (a) If , find and use it to find equations
of the tangent lines to the curve at the points

and .
; (b) Illustrate part (a) by graphing the curve and the tangent

lines on the same screen.

27–32 Find .

27. 28.

29. 30.

31. 32.

33–38 Each limit represents the derivative of some function at
some number . State such an and in each case.

33. 34.

35. 36.

37. 38.

39–40 A particle moves along a straight line with equation of
motion , where is measured in meters and in seconds.
Find the velocity and the speed when .

39.

40.

41. A warm can of soda is placed in a cold refrigerator. Sketch the
graph of the temperature of the soda as a function of time. Is
the initial rate of change of temperature greater or less than the
rate of change after an hour?

42. A roast turkey is taken from an oven when its temperature has
reached 185°F and is placed on a table in a room where the

f "t# ! t"1 " t

f "t# ! 100 # 50t " 4.9t 2

t ! 5
tss ! f "t#

lim
tl1

t 4 # t " 2
t " 1

lim
hl0

cos"$ # h# # 1
h

lim
xl$!4

tan x " 1
x " $!4

lim
xl5

2x " 32
x " 5

lim
hl0

s4 16 # h " 2
h

lim
hl0

"1 # h#10 " 1
h

afa
f

f "x# !
4

s1 " x
f "x# ! s1 " 2x

f "x# ! x"2f "t# !
2t # 1
t # 3

f "t# ! 2t 3 # tf "x# ! 3x 2 " 4x # 1

f !"a#

"3, 9#"2, 8#
y ! 4x 2 " x 3

G!"a#G"x# ! 4x 2 " x 3

"2, 2#
y ! 5x!"1 # x 2#

F!"2#F"x# ! 5x!"1 # x 2#

"1, "1#y ! x 4 " 2
t!"1#t"x# ! x 4 " 2

"1, 2#y ! 3x 2 " x 3
f !"1#f "x# ! 3x 2 " x 3

limxl "% t"x# ! "%limxl % t"x# ! %t!"2# ! "1
t!"0# ! t!"4# ! 1t!"1# ! t!"3# ! 0t"0# ! t"2# ! t"4# ! 0

t
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152 CHAPTER 2 LIMITS AND DERIVATIVES

temperature is 75°F. The graph shows how the temperature of
the turkey decreases and eventually approaches room tempera-
ture. By measuring the slope of the tangent, estimate the rate of
change of the temperature after an hour.

43. The number of US cellular phone subscribers (in millions) is
shown in the table. (Midyear estimates are given.)

(a) Find the average rate of cell phone growth
(i) from 2002 to 2006 (ii) from 2002 to 2004

(iii) from 2000 to 2002
In each case, include the units.

(b) Estimate the instantaneous rate of growth in 2002 by 
taking the average of two average rates of change. What 
are its units?

(c) Estimate the instantaneous rate of growth in 2002 by mea-
suring the slope of a tangent.

44. The number of locations of a popular coffeehouse chain is
given in the table. (The numbers of locations as of October 1 
are given.)

(a) Find the average rate of growth
(i) from 2006 to 2008 (ii) from 2006 to 2007

(iii) from 2005 to 2006
In each case, include the units.

(b) Estimate the instantaneous rate of growth in 2006 by 
taking the average of two average rates of change. What 
are its units?

(c) Estimate the instantaneous rate of growth in 2006 by mea-
suring the slope of a tangent.

(d) Estimate the intantaneous rate of growth in 2007 and com-
pare it with the growth rate in 2006. What do you conclude?

45. The cost (in dollars) of producing units of a certain com-
modity is .
(a) Find the average rate of change of with respect to when

the production level is changed
(i) from to 

(ii) from to x ! 101x ! 100
x ! 105x ! 100

xC
C!x" ! 5000 ! 10x ! 0.05x 2

x

N

N

P

T (°F)

0 30 60 90 120 150

100

200

t  (min)

(b) Find the instantaneous rate of change of with respect to
when . (This is called the marginal cost. Its signifi-
cance will be explained in Section 3.7.)

46. If a cylindrical tank holds 100,000 gallons of water, which can
be drained from the bottom of the tank in an hour, then Torri-
celli’s Law gives the volume of water remaining in the tank
after minutes as

Find the rate at which the water is flowing out of the tank (the
instantaneous rate of change of with respect to ) as a func-
tion of t. What are its units? For times t ! 0, 10, 20, 30, 40, 50,
and 60 min, find the flow rate and the amount of water remain-
ing in the tank. Summarize your findings in a sentence or two.
At what time is the flow rate the greatest? The least?

47. The cost of producing x ounces of gold from a new gold mine
is dollars.
(a) What is the meaning of the derivative ? What are its

units?
(b) What does the statement mean?
(c) Do you think the values of will increase or decrease

in the short term? What about the long term? Explain.

48. The number of bacteria after t hours in a controlled laboratory
experiment is .
(a) What is the meaning of the derivative ? What are its

units?
(b) Suppose there is an unlimited amount of space and

nutrients for the bacteria. Which do you think is larger,
or ? If the supply of nutrients is limited, would

that affect your conclusion? Explain.

49. Let be the temperature (in ) in Phoenix hours after
midnight on September 10, 2008. The table shows values of
this function recorded every two hours. What is the meaning of

? Estimate its value.

50. The quantity (in pounds) of a gourmet ground coffee that is
sold by a coffee company at a price of p dollars per pound 
is .
(a) What is the meaning of the derivative ? What are its

units?
(b) Is positive or negative? Explain.

51. The quantity of oxygen that can dissolve in water depends on
the temperature of the water. (So thermal pollution influences 

f "!8"

f "!8"
Q ! f ! p"

T "!8"

t#FT!t"

f "!10"f "!5"

f "!5"
n ! f !t"

f "!x"
f "!800" ! 17

f "!x"
C ! f !x"

tV

0 $ t $ 60V!t" ! 100,000(1 % 1
60 t)2

t
V

x ! 100
xC

t 1996 1998 2000 2002 2004 2006

N 44 69 109 141 182 233

Year 2004 2005 2006 2007 2008

N 8569 10,241 12,440 15,011 16,680

t 0 2 4 6 8 10 12 14

T 82 75 74 75 84 90 93 94
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WRITING PROJECT EARLY METHODS FOR FINDING TANGENTS 153

the oxygen content of water.) The graph shows how oxygen
solubility varies as a function of the water temperature .
(a) What is the meaning of the derivative ? What are its

units?
(b) Estimate the value of and interpret it.

52. The graph shows the influence of the temperature on the
maximum sustainable swimming speed of Coho salmon.
(a) What is the meaning of the derivative ? What are 

its units?

(mg/L)

4

8

12

16

S

0 T (°C)

Adapted from Environmental Science: Living Within the System 
of Nature, 2d ed.; by Charles E. Kupchella, © 1989. Reprinted by 
permission of Prentice-Hall, Inc., Upper Saddle River, NJ.

8 16 24 32 40

S!!T "
S

T

S!!16"

S!!T "
TS

(b) Estimate the values of and and interpret them.

53–54 Determine whether exists.

53.

54. f !x" ! #x 2 sin
1
x

if x " 0

0 if x ! 0

f !x" ! #x sin
1
x

if x " 0

0 if x ! 0

f !!0"

200 T (°C)10

S
(cm/s)

20

S!!25"S!!15"

W R I T I N G  P R O J E C T EARLY METHODS FOR FINDING TANGENTS

The first person to formulate explicitly the ideas of limits and derivatives was Sir Isaac Newton in
the 1660s. But Newton acknowledged that “If I have seen further than other men, it is because I
have stood on the shoulders of giants.” Two of those giants were Pierre Fermat (1601–1665) and
Newton’s mentor at Cambridge, Isaac Barrow (1630–1677). Newton was familiar with the meth-
ods that these men used to find tangent lines, and their methods played a role in Newton’s eventual
formulation of calculus.

The following references contain explanations of these methods. Read one or more of the
references and write a report comparing the methods of either Fermat or Barrow to modern 
methods. In particular, use the method of Section 2.7 to find an equation of the tangent line to the
curve at the point (1, 3) and show how either Fermat or Barrow would have solved
the same problem. Although you used derivatives and they did not, point out similarities between
the methods.

1. Carl Boyer and Uta Merzbach, A History of Mathematics (New York: Wiley, 1989), 
pp. 389, 432.

2. C. H. Edwards, The Historical Development of the Calculus (New York: Springer-Verlag,
1979), pp. 124, 132.

3. Howard Eves, An Introduction to the History of Mathematics, 6th ed. (New York: Saunders,
1990), pp. 391, 395.

4. Morris Kline, Mathematical Thought from Ancient to Modern Times (New York: Oxford
University Press, 1972), pp. 344, 346.

y ! x 3 " 2x
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154 CHAPTER 2 LIMITS AND DERIVATIVES

In the preceding section we considered the derivative of a function f at a fixed number a:

.

Here we change our point of view and let the number a vary. If we replace a in Equation 1
by a variable x, we obtain

Given any number x for which this limit exists, we assign to x the number . So we can
regard as a new function, called the derivative of and defined by Equation 2. We know
that the value of at , , can be interpreted geometrically as the slope of the tangent
line to the graph of at the point .

The function is called the derivative of because it has been “derived” from by the
limiting operation in Equation 2. The domain of is the set exists and may be
smaller than the domain of .

The graph of a function is given in Figure 1. Use it to sketch the graph
of the derivative .

SOLUTION We can estimate the value of the derivative at any value of by drawing the
tangent at the point and estimating its slope. For instance, for x ! 5 we draw 
the tangent at in Figure 2(a) and estimate its slope to be about , so . This
allows us to plot the point on the graph of directly beneath P. Repeating 
this procedure at several points, we get the graph shown in Figure 2(b). Notice that the
tangents at , , and are horizontal, so the derivative is 0 there and the graph of
crosses the -axis at the points , , and , directly beneath A, B, and C. Between
and the tangents have positive slope, so is positive there. But between and
the tangents have negative slope, so is negative there.

EXAMPLE 1v

f !!x"
CBf !!x"B
AC!B!A!x

f !CBA

f !P!!5, 1.5"
f !!5" # 1.53

2P
!x, f !x""

x

FIGURE 1

10

1

y=ƒ

x

y

f !
f

f
$%x & f !!x"f !

fff !
!x, f !x""f

f !!x"xf !
ff !

f !!x"

f !!x" ! lim
h l 0

f !x " h" # f !x"
h

2

f !!a" ! lim
h l 0

f !a " h" # f !a"
h

1

2.8 The Derivative as a Function
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SECTION 2.8 THE DERIVATIVE AS A FUNCTION 155

(a) If , find a formula for .
(b) Illustrate by comparing the graphs of and .

SOLUTION
(a) When using Equation 2 to compute a derivative, we must remember that the variable
is and that is temporarily regarded as a constant during the calculation of the limit.

EXAMPLE 2v

! lim
hl 0

!3x 2 ! 3xh ! h 2 " 1" ! 3x 2 " 1! lim
hl 0

3x 2h ! 3xh 2 ! h 3 " h
h

! lim
hl 0

x 3 ! 3x 2h ! 3xh 2 ! h 3 " x " h " x 3 ! x
h

f #!x" ! lim
hl 0

f !x ! h" " f !x"
h

! lim
hl 0

#!x ! h"3 " !x ! h"$ " #x 3 " x$
h

xh

f #f
f #!x"f !x" ! x 3 " x

FIGURE 2 

m=0

m=0m=0

Pª (5, 1.5)

y

B

A mÅ

C

P

(a)

x

1

10 5

y=ƒ

y

Aª Bª Cª

(b)

x

1

10 5

y=fª(x)

3
2

Visual 2.8 shows an animation of 
Figure 2 for several functions.
TEC
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156 CHAPTER 2 LIMITS AND DERIVATIVES

(b) We use a graphing device to graph and in Figure 3. Notice that when
has horizontal tangents and is positive when the tangents have positive slope. So

these graphs serve as a check on our work in part (a).

If , find the derivative of . State the domain of .

SOLUTION

We see that exists if , so the domain of is . This is smaller than the
domain of , which is .

Let’s check to see that the result of Example 3 is reasonable by looking at the graphs of
and in Figure 4. When is close to 0, is also close to , so is 

very large and this corresponds to the steep tangent lines near in Figure 4(a) and the
large values of just to the right of 0 in Figure 4(b). When is large, is very small
and this corresponds to the flatter tangent lines at the far right of the graph of and the 
horizontal asymptote of the graph of .

Find if .

SOLUTION

EXAMPLE 4

! lim
hl 0

!3
!2 " x " h"!2 " x"

! !
3

!2 " x"2! lim
hl 0

!3h
h!2 " x " h"!2 " x"

! lim
hl 0

!2 ! x ! 2h ! x 2 ! xh" ! !2 ! x " h ! x 2 ! xh"
h!2 " x " h"!2 " x"

! lim
hl 0

!1 ! x ! h"!2 " x" ! !1 ! x"!2 " x " h"
h!2 " x " h"!2 " x"

! lim
hl 0

1 ! !x " h"
2 " !x " h"

!
1 ! x
2 " x

h
f #!x" ! lim

hl 0

f !x " h" ! f !x"
h

f !x" !
1 ! x
2 " x

f #

EXAMPLE 3

f #
f

f #!x"xf #!x"
!0, 0"

f #!x" ! 1#(2sx )0sxxf #f

$0, $"f
!0, $"f #x % 0f #!x"

!
1

sx " sx
!

1
2sx

! lim
hl0

1
sx " h " sx

! lim
hl0

!x " h" ! x
h(sx " h " sx )

! lim
hl0

%sx " h ! sx
h

!
sx " h " sx
sx " h " sx &

! lim
hl0

sx " h ! sx
h

f #!x" ! lim
hl0

f !x " h" ! f !x"
h

f #ff !x" ! sx

FIGURE 3

2

_2

_2 2

2

_2

_2 2
f f ª

f #!x"f
f #!x" ! 0f #f

FIGURE 4

(a) ƒ=œ„x

1
2œ„x

(b) f ª (x)=

x

1

y

10

x

1

y

10

a
b

!
c
d

e
!

ad ! bc
bd

!
1
e

Here we rationalize the numerator.
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SECTION 2.8 THE DERIVATIVE AS A FUNCTION 157

Other Notations
If we use the traditional notation to indicate that the independent variable is and
the dependent variable is , then some common alternative notations for the derivative are
as follows:

The symbols and are called differentiation operators because they indicate the
operation of differentiation, which is the process of calculating a derivative.

The symbol , which was introduced by Leibniz, should not be regarded as a ratio
(for the time being); it is simply a synonym for . Nonetheless, it is a very useful and
suggestive notation, especially when used in conjunction with increment notation. Referring
to Equation 2.7.6, we can rewrite the definition of derivative in Leibniz notation in the form

If we want to indicate the value of a derivative in Leibniz notation at a specific num-
ber , we use the notation

or    

which is a synonym for .

Definition A function is differentiable at a if exists. It is differen-
tiable on an open interval [or or or ] if it is differ-
entiable at every number in the interval.

Where is the function differentiable?

SOLUTION If , then and we can choose small enough that and
hence . Therefore, for , we have

and so is differentiable for any .
Similarly, for we have and can be chosen small enough that

. Therefore, for ,

and so is differentiable for any .f x ! 0

EXAMPLE 5v

! lim
hl 0

"h
h

! lim
hl 0

!"1" ! "1

f #!x" ! lim
hl 0

# x $ h # " # x #
h

! lim
hl 0

"!x $ h" " !"x"
h

x ! 0x $ h ! 0 and so # x $ h # ! "!x $ h"
h# x # ! "xx ! 0

x % 0f

! lim
hl 0

h
h

! lim
hl 0

1 ! 1

f #!x" ! lim
hl 0

# x $ h # " # x #
h

! lim
hl 0

!x $ h" " x
h

x % 0# x $ h # ! x $ h
x $ h % 0h# x # ! xx % 0

f !x" ! # x #

!"&, &"!"&, a"!a, &"!a, b"
f #!a"f3

f #!a"

dy
dx$x!a

dy
dx %

x!a

a
dy&dx

dy
dx

! lim
'xl 0

'y
'x

f #!x"
dy&dx

d&dxD

f #!x" ! y# !
dy
dx

!
df
dx

!
d
dx

f !x" ! Df !x" ! Dx f !x"

y
xy ! f !x"

Leibniz

Gottfried Wilhelm Leibniz was born in Leipzig 
in 1646 and studied law, theology, philosophy, 
and mathematics at the university there, gradu-
ating with a bachelor’s degree at age 17. After
earning his doctorate in law at age 20, Leibniz
entered the diplomatic service and spent most
of his life traveling to the capitals of Europe on 
political missions. In particular, he worked to
avert a French military threat against Ger many
and attempted to reconcile the Catholic and
Protestant churches.

His serious study of mathematics did not
begin until 1672 while he was on a diplomatic
mission in Paris. There he built a calculating
machine and met scientists, like Huygens, who
directed his attention to the latest develop -
ments in mathematics and science. Leibniz
sought to develop a symbolic logic and system
of notation that would simplify logical reason-
ing. In particular, the version of calculus that he
published in 1684 established the notation and
the rules for finding derivatives that we use
today.

Unfortunately, a dreadful priority dispute
arose in the 1690s between the followers of
Newton and those of Leibniz as to who had
invented calculus first. Leibniz was even
accused of plagiarism by members of the Royal
Society in England. The truth is that each man
invented calculus independently. Newton
arrived at his version of calculus first but,
because of his fear of controversy, did not pub-
lish it immediately. So Leibniz’s 1684 account 
of calculus was the first to be published.
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158 CHAPTER 2 LIMITS AND DERIVATIVES

For we have to investigate

Let’s compute the left and right limits separately:

and

Since these limits are different, does not exist. Thus is differentiable at all
except 0.

A formula for is given by

and its graph is shown in Figure 5(b). The fact that does not exist is reflected geo-
metrically in the fact that the curve does not have a tangent line at . [See
Figure 5(a).]

Both continuity and differentiability are desirable properties for a function to have. The
following theorem shows how these properties are related.

Theorem If is differentiable at , then is continuous at .

PROOF To prove that is continuous at , we have to show that . We
do this by showing that the difference approaches 0.

The given information is that f is differentiable at a, that is,

exists (see Equation 2.7.5). To connect the given and the unknown, we divide and multi-
ply by (which we can do when ):

Thus, using the Product Law and (2.7.5), we can write

x ! 0

! f !!a" ! 0 ! 0

! lim
xl a

f !x" " f !a"
x " a

! lim
xl a

!x " a"

lim
xl a

# f !x" " f !a"$ ! lim
xl a

f !x" " f !a"
x " a

!x " a"

f !x" " f !a" !
f !x" " f !a"
x " a

!x " a"

x " ax " af !x" " f !a"

f !!a" ! lim
xl a

f !x" " f !a"
x " a

f !x" " f !a"
f !x" ! f !a"lim xl aaf

afaf4

!0, 0"y ! % x %
f !!0"

f !!x" ! &1
" 1

if x # 0
if x $ 0

f !

xff !!0"

lim
hl0"

% 0 % h % " % 0 %
h

! lim
hl0"

%h %
h

! lim
hl0"

" h
h

! lim
hl0"

!" 1" ! " 1

lim
hl0%

% 0 % h % " % 0 %
h

! lim
hl0%

%h %
h

! lim
hl0%

h
h

! lim
hl0%

1 ! 1

! lim
hl 0

% 0 % h % " % 0 %
h

!if it exists"

f !!0" ! lim
hl 0

f !0 % h" " f !0"
h

x

1

y

_1
0

x

y

0

FIGURE 5

(a) y=ƒ=| x |

(b) y=fª(x) 

An important aspect of problem solving is
trying to find a connection between the given
and the unknown. See Step 2 (Think of a Plan)
in Principles of Problem Solving on page 75.

PS
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SECTION 2.8 THE DERIVATIVE AS A FUNCTION 159

To use what we have just proved, we start with and add and subtract :

Therefore is continuous at .

| NOTE The converse of Theorem 4 is false; that is, there are functions that are contin-
uous but not differentiable. For instance, the function is continuous at 0 because

(See Example 7 in Section 2.3.) But in Example 5 we showed that is not differentiable 
at 0.

How Can a Function Fail to Be Differentiable?
We saw that the function in Example 5 is not differentiable at 0 and Figure 5(a)
shows that its graph changes direction abruptly when . In general, if the graph of a
function has a “corner” or “kink” in it, then the graph of has no tangent at this point 
and is not differentiable there. [In trying to compute , we find that the left and right
limits are different.]

Theorem 4 gives another way for a function not to have a derivative. It says that if is
not continuous at , then is not differentiable at . So at any discontinuity (for instance,
a jump discontinuity) fails to be differentiable.

A third possibility is that the curve has a vertical tangent line when ; that is, 
is continuous at and

This means that the tangent lines become steeper and steeper as . Figure 6 shows one
way that this can happen; Figure 7(c) shows another. Figure 7 illustrates the three possi-
bilities that we have discussed.

A graphing calculator or computer provides another way of looking at differentiabil-
ity. If is differentiable at , then when we zoom in toward the point the graph !a, f !a""af

FIGURE 7
Three ways for ƒ not to be

differentiable at a (a) A corner (c) A vertical tangent(b) A discontinuity

x

y

a0 x

y

a0x

y

a0

x l a

lim
xl a # f !!x" # ! "

a
fx ! a

f
afa

f

f !!a"f
ff

x ! 0
y ! # x #

f

lim
xl 0

f !x" ! lim
xl 0 # x # ! 0 ! f !0"

f !x" ! # x #

af

! f !a" # 0 ! f !a"

! lim
xl a

f !a" # lim
xl a

$ f !x" $ f !a"%

lim
xl a

f !x" ! lim
xl a

$ f !a" # ! f !x" $ f !a""%

f !a"f !x"

FIGURE 6

vertical tangent
line

x

y

a0
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160 CHAPTER 2 LIMITS AND DERIVATIVES

straightens out and appears more and more like a line. (See Figure 8. We saw a specific 
example of this in Figure 2 in Section 2.7.) But no matter how much we zoom in toward a
point like the ones in Figures 6 and 7(a), we can’t eliminate the sharp point or corner (see
Figure 9).

Higher Derivatives
If is a differentiable function, then its derivative is also a function, so may have a
derivative of its own, denoted by . This new function is called the second 
derivative of because it is the derivative of the derivative of . Using Leibniz notation,
we write the second derivative of as

If , find and interpret .

SOLUTION In Example 2 we found that the first derivative is . So the 
second derivative is

The graphs of , , and are shown in Figure 10.
We can interpret as the slope of the curve at the point . In

other words, it is the rate of change of the slope of the original curve .
Notice from Figure 10 that is negative when has negative slope 

and positive when has positive slope. So the graphs serve as a check on our 
calculations.

In general, we can interpret a second derivative as a rate of change of a rate of change.
The most familiar example of this is acceleration, which we define as follows.

EXAMPLE 6

y ! f !!x"
y ! f !!x"f "!x"

y ! f !x"
!x, f !!x""y ! f !!x"f "!x"

f "f !f

! lim
hl0

!6x # 3h" ! 6x

! lim
hl0

3x 2 # 6xh # 3h2 $ 1 $ 3x 2 # 1
h

! lim
hl0

#3!x # h"2 $ 1$ $ #3x 2 $ 1$
h

f !!!x" ! ! f !"!!x" ! lim
hl0

f !!x # h" $ f !!x"
h

f !!x" ! 3x 2 $ 1

f "!x"f !x" ! x 3 $ x

d
dx % dydx& !

d 2y
dx 2

y ! f !x"
ff
f "! f !"! ! f "

f !f !f

FIGURE 8
ƒ is differentiable at a.

FIGURE 9
ƒ is not differentiable at a.

x

y

a0x

y

a0

FIGURE 10

f · fª f

1.5

_2

2

_1.5

In Module 2.8 you can see how changing
the coefficients of a polynomial affects the 
appearance of the graphs of , , and .

TEC

f "f !f
f
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SECTION 2.8 THE DERIVATIVE AS A FUNCTION 161

If is the position function of an object that moves in a straight line, we know that
its first derivative represents the velocity of the object as a function of time:

The instantaneous rate of change of velocity with respect to time is called the acceleration
of the object. Thus the acceleration function is the derivative of the velocity function

and is therefore the second derivative of the position function:

or, in Leibniz notation,

The third derivative is the derivative of the second derivative: . So
can be interpreted as the slope of the curve or as the rate of change of

. If , then alternative notations for the third derivative are

The process can be continued. The fourth derivative is usually denoted by . In gen-
eral, the th derivative of is denoted by and is obtained from by differentiating
times. If , we write

If , find and .

SOLUTION In Example 6 we found that . The graph of the second derivative
has equation and so it is a straight line with slope 6. Since the derivative is
the slope of , we have

for all values of . So is a constant function and its graph is a horizontal line. There-
fore, for all values of ,

We can also interpret the third derivative physically in the case where the function is 
the position function of an object that moves along a straight line. Because

, the third derivative of the position function is the derivative of the accel-
eration function and is called the jerk:

Thus the jerk j is the rate of change of acceleration. It is aptly named because a large jerk
means a sudden change in acceleration, which causes an abrupt movement in a vehicle.

We have seen that one application of second and third derivatives occurs in analyzing 
the motion of objects using acceleration and jerk. We will investigate another applica-
tion of second derivatives in Section 4.3, where we show how knowledge of gives us 
information about the shape of the graph of . In Chapter 11 we will see how second and
higher derivatives enable us to represent functions as sums of infinite series.

v!t"
s ! s!t"

v!t" ! s!!t" !
ds
dt

EXAMPLE 7

f
f "

j !
da
dt

!
d 3s
dt 3

s# ! !s" "! ! a!
s ! s!t"

f !4"!x" ! 0
x
f #x

f #!x" ! 6
f "!x"

f #!x"y ! 6x
f "!x" ! 6x

f !4"!x"f #!x"f !x" ! x3 $ x

y !n" ! f !n"!x" !
dny
dxn

y ! f !x"
nff !n"fn

f !4"f"

y# ! f #!x" !
d
dx #d 2y

dx 2 $ !
d 3y
dx 3

y ! f !x"f "!x"
y ! f "!x"f #!x"

f # ! ! f " "!f #

a !
dv
dt

!
d 2s
dt 2

a!t"

a!t" ! v!!t" ! s"!t"
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162 CHAPTER 2 LIMITS AND DERIVATIVES

1–2 Use the given graph to estimate the value of each derivative.
Then sketch the graph of .

1. (a)
(b)
(c)
(d)
(e)
(f )
(g)

2. (a)
(b)
(c)
(d)
(e)
(f )
(g)
(h)

3. Match the graph of each function in (a)–(d) with the graph of
its derivative in I–IV. Give reasons for your choices.

y

0

y

0

y

0

y

0

xx

x x

(b)(a)

(c) (d)

III

III IV

y

0

y

0

y

0

x

x

y

0

x

x

y

0 x

1

1

f !!7"
f !!6"
f !!5"
f !!4"
f !!3"
f !!2"
f !!1"

y

x

1

1

f !!0"

f !!3"
f !!2"
f !!1"
f !!0"
f !!" 1"
f !!" 2"
f !!" 3"

f !
4–11 Trace or copy the graph of the given function . (Assume that
the axes have equal scales.) Then use the method of Example 1 to
sketch the graph of below it.

4.

5. 6.

7. 8.

9. 10.

11.

12. Shown is the graph of the population function for yeast
cells in a laboratory culture. Use the method of Example 1 to

(yeast cells)

t (hours)

P

0 5 10 15

500

P!t"

0 x

y

0 x

y

x

y

0

x

y

0 0 x

y

0 x

y

f !

f

0 x

y

x

y

0

2.8 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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SECTION 2.8 THE DERIVATIVE AS A FUNCTION 163

graph the derivative . What does the graph of tell us
about the yeast population?

13. A rechargeable battery is plugged into a charger. The graph
shows , the percentage of full capacity that the battery
reaches as a function of time elapsed (in hours).
(a) What is the meaning of the derivative ?
(b) Sketch the graph of . What does the graph tell you?

14. The graph (from the US Department of Energy) shows how
driving speed affects gas mileage. Fuel economy is measured
in miles per gallon and speed is measured in miles per hour.
(a) What is the meaning of the derivative ?
(b) Sketch the graph of .
(c) At what speed should you drive if you want to save on gas?

15. The graph shows how the average age of first marriage of
Japanese men varied in the last half of the 20th century. 
Sketch the graph of the derivative function . During 
which years was the derivative negative?

16–18 Make a careful sketch of the graph of and below it sketch
the graph of in the same manner as in Exercises 4–11. Can you
guess a formula for from its graph?

16. 17. f !x" ! e xf !x" ! sin x

f !!x"
f !

f

F!!v"

1990 2000

25

M

1960 1970 1980

27

t

v
F

√ (mi/h)0

10

30

20

70604020 503010

F    (mi/gal)

F!!v"

C!!t"
C!!t"

t
C!t"

t (hours)2 4 6 8 10 12

20

40

60

80

100

percentage 
of full charge

C

M!!t"

P!!t" P! 18.

; 19. Let .
(a) Estimate the values of , , , and by using

a graphing device to zoom in on the graph of .
(b) Use symmetry to deduce the values of , , 

and .
(c) Use the results from parts (a) and (b) to guess a formula 

for .
(d) Use the definition of derivative to prove that your guess in

part (c) is correct.

; 20. Let .
(a) Estimate the values of , , , , and by

using a graphing device to zoom in on the graph of f.
(b) Use symmetry to deduce the values of , ,

, and .
(c) Use the values from parts (a) and (b) to graph .
(d) Guess a formula for .
(e) Use the definition of derivative to prove that your guess in

part (d) is correct.

21–31 Find the derivative of the function using the definition of
derivative. State the domain of the function and the domain of its
derivative.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32. (a) Sketch the graph of by starting with the
graph of and using the transformations of Sec -
tion 1.3.

(b) Use the graph from part (a) to sketch the graph of .
(c) Use the definition of a derivative to find . What are the

domains of f and ?
; (d) Use a graphing device to graph and compare with your

sketch in part (b).

33. (a) If , find .
; (b) Check to see that your answer to part (a) is reasonable by

comparing the graphs of and .

34. (a) If , find .
; (b) Check to see that your answer to part (a) is reasonable by

comparing the graphs of and .f !f

f !!x"f !x" ! x " 1#x

f !f

f !!x"f !x" ! x 4 " 2x

f !
f !

f !!x"
f !

y ! sx
f !x" ! s6 # x

f !x" ! x 4

f !x" ! x 3#2G!t" !
1 # 2t
3 " t

f !x" !
x 2 # 1
2x # 3

t!x" ! s9 # x

t!t" !
1

st
f !x" ! x 2 # 2x 3

f !x" ! 1.5x 2 # x " 3.7f !t" ! 5t # 9t 2

f !x" ! mx " bf !x" ! 1
2 x # 1

3

f !!x"
f !

f !!# 3"f !!# 2"
f !!# 1"f !(# 1

2 )

f !!3"f !!2"f !!1"f !( 1
2 )f !!0"

f !x" ! x 3

f !!x"

f !!# 2"
f !!# 1"f !(# 1

2 )
f
f !!2"f !!1"f !( 1

2 )f !!0"
f !x" ! x 2

f !x" ! ln x
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164 CHAPTER 2 LIMITS AND DERIVATIVES

35. The unemployment rate varies with time. The table
(from the Bureau of Labor Statistics) gives the percentage of
unemployed in the US labor force from 1999 to 2008.

(a) What is the meaning of ? What are its units?
(b) Construct a table of estimated values for .

36. Let be the percentage of Americans under the age of 18
at time . The table gives values of this function in census
years from 1950 to 2000.

(a) What is the meaning of ? What are its units?
(b) Construct a table of estimated values for .
(c) Graph and .
(d) How would it be possible to get more accurate values 

for ?

37–40 The graph of is given. State, with reasons, the numbers
at which is not differentiable.

37. 38.

39. 40.

; 41. Graph the function . Zoom in repeatedly, 
first toward the point (!1, 0) and then toward the origin.
What is different about the behavior of in the vicinity of
these two points? What do you conclude about the differen-
tiability of f ?

; 42. Zoom in toward the points (1, 0), (0, 1), and (!1, 0) on 
the graph of the function . What do you
notice? Account for what you see in terms of the differen-
tiability of t.

t!x" ! !x 2 ! 1"2#3

f

f !x" ! x " s$ x $

_2 4 x

y

0 _2 2 x

y

0

_2 2 x

y

0 2 4 x

y

0

f
f

P#!t"

P P#
P#!t"

P#!t"

t
P!t"

U#!t"
U#!t"

U!t" 43. The figure shows the graphs of , , and . Identify each
curve, and explain your choices.

44. The figure shows graphs of , , and . Identify each
curve, and explain your choices.

45. The figure shows the graphs of three functions. One is the
position function of a car, one is the velocity of the car, and
one is its acceleration. Identify each curve, and explain your
choices.

46. The figure shows the graphs of four functions. One is the 
position function of a car, one is the velocity of the car, one
is its acceleration, and one is its jerk. Identify each curve, and
explain your choices.

f f # f $

0 t

y

a
b c

d

t

y a

b c

0

x

y a b c d

f, f # f $ f %

x

y a

b

c

t t

1999 4.2 2004 5.5
2000 4.0 2005 5.1
2001 4.7 2006 4.6
2002 5.8 2007 4.6
2003 6.0 2008 5.8

U!t"U!t"

t t

1950 31.1 1980 28.0
1960 35.7 1990 25.7
1970 34.0 2000 25.7

P!t"P!t"
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CHAPTER 2 REVIEW 165

; 47–48 Use the definition of a derivative to find and .
Then graph , , and on a common screen and check to see if
your answers are reasonable.

47. 48.

; 49. If , find , , , and .
Graph , , , and on a common screen. Are the 
graphs consistent with the geometric interpretations of these
derivatives?

50. (a) The graph of a position function of a car is shown, where
s is measured in feet and t in seconds. Use it to graph the
velocity and acceleration of the car. What is the accelera-
tion at seconds?

(b) Use the acceleration curve from part (a) to estimate the 
jerk at seconds. What are the units for jerk?

51. Let .
(a) If , use Equation 2.7.5 to find .
(b) Show that does not exist.
(c) Show that has a vertical tangent line at .

(Recall the shape of the graph of . See Figure 13 in Sec-
tion 1.2.)

52. (a) If , show that does not exist.
(b) If , find .
(c) Show that has a vertical tangent line at .

; (d) Illustrate part (c) by graphing .

53. Show that the function is not differentiable 
at 6. Find a formula for and sketch its graph.

54. Where is the greatest integer function not differ-
entiable? Find a formula for and sketch its graph.

f !!x" f "!x"

f !
f !x" ! # x $

f !
f !x" ! % x # 6 %

y ! x 2&3
y ! x 2&3 !0, 0"

a " 0 t!!a"
t!x" ! x 2&3 t!!0"

f
y ! s3 x !0, 0"
f !!0"

a " 0 f !!a"
f !x" ! s3 x

t ! 10

100 t

s

100

20

t ! 10

f f ! f " f $
f !x" ! 2x 2 # x3 f !!x" f "!x" f $!x" f !4"!x"

f !x" ! 3x 2 % 2x % 1 f !x" ! x 3 # 3x

f f ! f "
55. (a) Sketch the graph of the function .

(b) For what values of is differentiable?
(c) Find a formula for .

56. The left-hand and right-hand derivatives of at are
defined by

and

if these limits exist. Then exists if and only if these
one-sided derivatives exist and are equal.
(a) Find and for the function

(b) Sketch the graph of .
(c) Where is discontinuous?
(d) Where is not differentiable?

57. Recall that a function is called even if for
all in its domain and odd if for all such .
Prove each of the following.
(a) The derivative of an even function is an odd function.
(b) The derivative of an odd function is an even function.

58. When you turn on a hot-water faucet, the temperature of
the water depends on how long the water has been running.
(a) Sketch a possible graph of as a function of the time 

that has elapsed since the faucet was turned on.
(b) Describe how the rate of change of with respect to 

varies as increases.
(c) Sketch a graph of the derivative of .

59. Let be the tangent line to the parabola at the point
. The angle of inclination of is the angle that 

makes with the positive direction of the -axis. Calculate 
correct to the nearest degree.

f !% !a" ! lim
h l0%

f !a % h" # f !a"
h

f !# !a" ! lim
h l0#

f !a % h" # f !a"
h

af

f !
fx

f !x" ! x % x %

&x
!&!!1, 1"

y ! x 2!

T
t

tT

tT

T

xf !# x" ! # f !x"x
f !# x" ! f !x"f

f !!a"

f
f

f

1
5 # x

if x ' 4
f !x" !

0
5 # x

if x ( 0
if 0 ) x ) 4

f !% !4"f !# !4"

2 Review

1. Explain what each of the following means and illustrate with
a sketch.
(a) (b)

(c) (d)

(e) lim
x l*

f !x" ! L

lim
x la

f !x" ! *lim
x la#

f !x" ! L

lim
x la%

f !x" ! Llim
x la

f !x" ! L

2. Describe several ways in which a limit can fail to exist. Illus-
trate with sketches.

3. State the following Limit Laws.
(a) Sum Law (b) Difference Law
(c) Constant Multiple Law (d) Product Law
(e) Quotient Law (f) Power Law
(g) Root Law

Concept Check
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166 CHAPTER 2 LIMITS AND DERIVATIVES

4. What does the Squeeze Theorem say?

5. (a) What does it mean to say that the line is a vertical
asymptote of the curve ? Draw curves to illustrate
the various possibilities.

(b) What does it mean to say that the line is a horizontal
asymptote of the curve ? Draw curves to illustrate
the various possibilities.

6. Which of the following curves have vertical asymptotes?
Which have horizontal asymptotes?
(a) (b)
(c) (d)
(e) (f )
(g) (h)

7. (a) What does it mean for f to be continuous at a?
(b) What does it mean for f to be continuous on the interval

? What can you say about the graph of such a 
function?

8. What does the Intermediate Value Theorem say?

9. Write an expression for the slope of the tangent line to the
curve at the point .

10. Suppose an object moves along a straight line with position
at time t. Write an expression for the instantaneous veloc-f !t"

y ! f !x" !a, f !a""

!!", ""

y ! sxy ! 1#x
y ! ln xy ! e x
y ! tan!1xy ! tan x
y ! sin xy ! x 4

y ! f !x"
y ! L

y ! f !x"
x ! a

ity of the object at time . How can you interpret this
velocity in terms of the graph of f ?

11. If and x changes from to , write expressions for
the following.
(a) The average rate of change of y with respect to x over the

interval .
(b) The instantaneous rate of change of y with respect to x

at .

12. Define the derivative . Discuss two ways of interpreting
this number.

13. Define the second derivative of . If is the position
function of a particle, how can you interpret the second 
derivative?

14. (a) What does it mean for to be differentiable at a?
(b) What is the relation between the differentiability and 

continuity of a function?
(c) Sketch the graph of a function that is continuous but not 

differentiable at .

15. Describe several ways in which a function can fail to be 
differentiable. Illustrate with sketches.

t ! a

a ! 2

f

f !t"f

f #!a"

x ! x1

$x1, x2 %

x2x1y ! f !x"

Determine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1.

2.

3.

4. If and  , then
does not exist.

5. If and  , then
does not exist.

6. If neither nor exists, then
does not exist.

7. If exists but does not exist, then
does not exist.

8. If exists, then the limit must be 

9. If p is a polynomial, then 

10. If and , then
.

11. A function can have two different horizontal asymptotes.

limxl 0 $f !x" ! t!x"% ! 0
limxl 0 f !x" ! " limxl 0 t!x" ! "

limxlb p!x" ! p!b".

f !6" t!6".limxl 6 $f !x" t!x"%

limxla $f !x" $ t!x"%
limxl a t!x"limxla f !x"

limxla $f !x" $ t!x"%
limxl a t!x"limxl a f !x"

limxl 5 $f !x"#t!x"%
limxl 5 t!x" ! 0lim xl5 f !x" ! 0

limxl 5 $f !x"#t!x"%
limxl 5 t!x" ! 0limxl 5 f !x" ! 2

lim
xl 1

x ! 3
x 2 $ 2x ! 4

!
lim
xl 1

!x ! 3"

lim
xl 1

!x 2 $ 2x ! 4"

lim
xl1

x 2 $ 6x ! 7
x 2 $ 5x ! 6

!
lim
xl1

!x 2 $ 6x ! 7"

lim
xl1

!x 2 $ 5x ! 6"

lim
xl4
& 2x
x ! 4

!
8

x ! 4' ! lim
xl4

2x
x ! 4

! lim
xl4

8
x ! 4

12. If has domain and has no horizontal asymptote, then
or .

13. If the line is a vertical asymptote of , then is
not defined at 1.

14. If and , then there exists a number c
between 1 and 3 such that .

15. If f is continuous at 5 and and , then

16. If f is continuous on and and
then there exists a number r such that and .

17. Let be a function such that . Then there
exists a number such that if , then

.

18. If for all and exists, then
.

19. If is continuous at a, then is differentiable at a.

20. If exists, then 

21.

22. The equation has a root in the 
interval .

23. If is continuous at , so is .

24. If is continuous at , so is .( f ( a f

f a ( f (
!0, 2"

x 10 ! 10x 2 $ 5 ! 0

d 2y
dx 2 ! &dydx'2

limxl r f !x" ! f !r".f #!r"

ff

lim xl 0 f !x" % 1
lim xl 0 f !x"xf !x" % 1

( f !x" ! 6 ( & 1
0 & ( x ( & ''

lim xl 0 f !x" ! 6f

f !r" ! (( r ( & 1
f !1" ! 3,f !!1" ! 4$!1, 1%

limxl 2 f !4x 2 ! 11" ! 2.
f !4" ! 3f !5" ! 2

f !c" ! 0
f !3" & 0f !1" % 0

fy ! f !x"x ! 1

limxl " f !x" ! !"limxl " f !x" ! "
$0, ""f

True-False Quiz
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CHAPTER 2 REVIEW 167

; Graphing calculator or computer required

1. The graph of is given.
(a) Find each limit, or explain why it does not exist.

(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

(b) State the equations of the horizontal asymptotes.
(c) State the equations of the vertical asymptotes.
(d) At what numbers is discontinuous? Explain.

2. Sketch the graph of an example of a function that satisfies all
of the following conditions:

,  ,  ,

,  ,

is continuous from the right at 3

3–20 Find the limit.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.lim
xl!"

ln!sin x" lim
xl "#

1 " 2x 2 " x 4

5 $ x " 3x 4

lim
xl #

sx 2 " 9
2x " 6

lim
xl "#

sx 2 " 9
2x " 6

lim
xl 3

sx $ 6 " x
x 3 " 3x 2lim

ul 1

u 4 " 1
u3 $ 5u 2 " 6u

lim
v l 4$

4 " v

# 4 " v #
lim
rl9

sr
!r " 9"4

lim
tl2

t 2 " 4
t 3 " 8

lim
hl0

!h " 1"3 $ 1
h

lim
xl1$

x 2 " 9
x 2 $ 2x " 3

lim
xl"3

x 2 " 9
x 2 $ 2x " 3

lim
xl3

x 2 " 9
x 2 $ 2x " 3

lim
xl1

e x
3 "x

f

lim
xl3$

f !x" ! 2lim
xl3"

f !x" ! "#

lim
xl"3

f !x" ! #lim
xl #

f !x" ! 0lim
xl"#

f !x" ! "2

f

0 x

y

1
1

f

lim
xl "#

f !x"lim
xl#

f !x"

lim
xl2"

f !x"lim
xl0

f !x"

lim
xl4

f !x"lim
xl"3

f !x"

lim
xl"3$

f !x"lim
xl2$

f !x"

f 17. 18.

19.

20.

; 21–22 Use graphs to discover the asymptotes of the curve. Then
prove what you have discovered.

21.

22.

23. If for , find .

24. Prove that .

25–28 Prove the statement using the precise definition of a limit.

25. 26.

27. 28.

29. Let

(a) Evaluate each limit, if it exists.
(i) (ii) (iii)

(iv) (v) (vi)

(b) Where is discontinuous?
(c) Sketch the graph of .

30. Let

(a) For each of the numbers 2, 3, and 4, discover whether is
continuous from the left, continuous from the right, or con-
tinuous at the number.

(b) Sketch the graph of .

lim
xl0$

tan"1!1$x"

lim
xl #

(sx 2 $ 4x $ 1 " x) lim
xl #

e x"x2

t

t

t!x" !

2x " x 2

2 " x
x " 4
!

if 0 % x % 2
if 2 & x % 3
if 3 & x & 4
if x ' 4

f
f

lim
xl3

f !x"lim
xl3$

f !x"lim
xl3"

f !x"

lim
xl0

f !x"lim
xl0"

f !x"lim
xl0$

f !x"

f !x" ! %s"x
3 " x
!x " 3"2

if x & 0
if 0 % x & 3
if x ( 3

lim
xl 4$

2
sx " 4

! #lim
xl 2

!x 2 " 3x" ! "2

lim
xl 0

s3 x ! 0lim
xl 2

!14 " 5x" ! 4

limxl 0 x 2 cos!1$x 2 " ! 0

limxl1 f !x"0 & x & 32x " 1 % f !x" % x 2

y ! sx 2 $ x $ 1 " sx 2 " x

y !
cos2x
x 2

lim
xl 1

& 1
x " 1

$
1

x 2 " 3x $ 2'

Exercises
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168 CHAPTER 2 LIMITS AND DERIVATIVES

31–32 Show that the function is continuous on its domain. State 
the domain.

31. 32.

33–34 Use the Intermediate Value Theorem to show that there is
a root of the equation in the given interval.

33.

34. ,

35. (a) Find the slope of the tangent line to the curve
at the point .

(b) Find an equation of this tangent line.

36. Find equations of the tangent lines to the curve

at the points with -coordinates and 

37. The displacement (in meters) of an object moving in a
straight line is given by , where is mea-
sured in seconds.
(a) Find the average velocity over each time period.

(i) (ii)
(iii) (iv)

(b) Find the instantaneous velocity when .

38. According to Boyle’s Law, if the temperature of a confined
gas is held fixed, then the product of the pressure and the
volume is a constant. Suppose that, for a certain gas,

, where is measured in pounds per square inch
and is measured in cubic inches.
(a) Find the average rate of change of as increases from

200 in to 250 in .
(b) Express as a function of and show that the instanta-

n eous rate of change of with respect to is inversely
proportional to the square of .

39. (a) Use the definition of a derivative to find , where
.

(b) Find an equation of the tangent line to the curve
at the point (2, 4).

; (c) Illustrate part (b) by graphing the curve and the tangent
line on the same screen.

40. Find a function and a number a such that

41. The total cost of repaying a student loan at an interest rate of
r% per year is .
(a) What is the meaning of the derivative ? What are its

units?
(b) What does the statement mean?
(c) Is always positive or does it change sign?f !!r"

f !!10" ! 1200

f !!r"
C ! f !r"

h!x" ! xesin x t!x" !
sx 2 " 9
x 2 " 2

lim
hl0

!2 # h"6 " 64
h

! f !!a"

f

y ! x 3 " 2x

f !x" ! x 3 " 2x
f !!2"

P
V P

V P
3 3

P V

P
V

V
PV ! 800

P

t ! 1
#1, 1.1$#1, 1.5$
#1, 2$#1, 3$

ts ! 1 # 2t # 1
4t 2

" 1.0x

y !
2

1 " 3x

!2, 1"y ! 9 " 2x 2

cossx ! e x " 2 !0, 1"

!1, 2"x 5 " x 3 # 3x " 5 ! 0,

42–44 Trace or copy the graph of the function. Then sketch a
graph of its derivative directly beneath.

42. 43.

44.

45. (a) If , use the definition of a derivative to 
find .

(b) Find the domains of and .
; (c) Graph and on a common screen. Compare the graphs

to see whether your answer to part (a) is reasonable.

46. (a) Find the asymptotes of the graph of and
use them to sketch the graph.

(b) Use your graph from part (a) to sketch the graph of .
(c) Use the definition of a derivative to find .

; (d) Use a graphing device to graph and compare with your
sketch in part (b).

47. The graph of is shown. State, with reasons, the numbers at
which is not differentiable.

48. The figure shows the graphs of , , and . Identify each
curve, and explain your choices.

x

y
a

b

c
0

f f ! f $

x

y

20 4 6_1

f
f

f !
f !!x"

f !

f !x" !
4 " x
3 # x

f f !
f f !

f !!x"
f !x" ! s3 " 5x

x

y

0 x

y

0 x

y
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CHAPTER 2 REVIEW 169

49. Let be the total value of US currency (coins and bank-
notes) in circulation at time . The table gives values of this
function from 1980 to 2000, as of September 30, in billions of
dollars. Interpret and estimate the value of .

50. The total fertility rate at time t, denoted by , is an esti-
mate of the average number of children born to each woman
(assuming that current birth rates remain constant). The graph
of the total fertility rate in the United States shows the fluctua-
tions from 1940 to 1990.
(a) Estimate the values of , , and .
(b) What are the meanings of these derivatives?
(c) Can you suggest reasons for the values of these 

derivatives?

F!!1950" F!!1965" F!!1987"

F!t"

C!!1990"

t
C!t"

51. Suppose that for all , where .
Find .

52. Let .
(a) For what values of does exist?
(b) At what numbers is discontinuous?f

lim x l a f !x"a
f !x" ! #x $ " ## x $

lim x l a f !x"
lim x l a t!x" ! 0x% f !x" % $ t!x"

t

y

1940 1960 1970 1980 19901950

1.5

2.0

2.5

3.0

3.5

y=F(t)

baby
boom

baby
bust

baby
boomlet

t 1980 1985 1990 1995 2000

129.9 187.3 271.9 409.3 568.6C!t"
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In our discussion of the principles of problem solving we considered the problem-solving
strategy of introducing something extra (see page 75). In the following example we show
how this principle is sometimes useful when we evaluate limits. The idea is to change the
variable—to introduce a new variable that is related to the original variable—in such a
way as to make the problem simpler. Later, in Section 5.5, we will make more extensive
use of this general idea.

Evaluate , where c is a constant.

SOLUTION As it stands, this limit looks challenging. In Section 2.3 we evaluated several
limits in which both numerator and denominator approached 0. There our strategy was to
perform some sort of algebraic manipulation that led to a simplifying cancellation, but
here it’s not clear what kind of algebra is necessary.

So we introduce a new variable t by the equation

We also need to express x in terms of t, so we solve this equation:

Notice that is equivalent to . This allows us to convert the given limit into
one involving the variable t :

The change of variable allowed us to replace a relatively complicated limit by a simpler
one of a type that we have seen before. Factoring the denominator as a difference of
cubes, we get

In making the change of variable we had to rule out the case . But if , the
function is for all nonzero and so its limit is . Therefore, in all cases, the limit is .

The following problems are meant to test and challenge your problem-solving skills.
Some of them require a considerable amount of time to think through, so don’t be dis-
couraged if you can’t solve them right away. If you get stuck, you might find it helpful to
refer to the discussion of the principles of problem solving on page 75.

1. Evaluate .

2. Find numbers a and b such that .lim
x l0

sax ! b " 2
x

! 1

lim
x l1

s3 x " 1
sx " 1

EXAMPLE 1

c!30x0
c ! 0c ! 0

! lim
t l1

c
t 2 ! t ! 1

!
c
3

lim
t l1

c"t " 1#
t 3 " 1

! lim
t l1

c"t " 1#
"t " 1#"t 2 ! t ! 1#

! lim
t l1

c"t " 1#
t 3 " 1

lim
x l 0

s3 1 ! cx " 1
x

! lim
t l1

t " 1
"t 3 " 1#!c

t l 1x l 0

"if c " 0#x !
t 3 " 1

c
t 3 ! 1 ! cx

t ! s3 1 ! cx

lim
x l 0

s3 1 ! cx " 1
x

Problems Plus

170

Problems
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3. Evaluate .

4. The figure shows a point P on the parabola and the point Q where the perpendicular
bisector of OP intersects the y-axis. As P approaches the origin along the parabola, what
happens to Q? Does it have a limiting position? If so, find it.

5. Evaluate the following limits, if they exist, where denotes the greatest integer function.

(a) (b) 

6. Sketch the region in the plane defined by each of the following equations.

(a) (b) (c) (d) 

7. Find all values of a such that is continuous on !:

8. A fixed point of a function is a number in its domain such that . (The function
doesn’t move ; it stays fixed.)
(a) Sketch the graph of a continuous function with domain whose range also lies 

in . Locate a fixed point of .
(b) Try to draw the graph of a continuous function with domain and range in that

does not have a fixed point. What is the obstacle?
(c) Use the Intermediate Value Theorem to prove that any continuous function with domain

and range in must have a fixed point. 

9. If and , find .

10. (a) The figure shows an isosceles triangle with . The bisector of angle
intersects the side at the point . Suppose that the base remains fixed but the
altitude of the triangle approaches 0, so approaches the midpoint of . 
What happens to during this process? Does it have a limiting position? If so, find it.

(b) Try to sketch the path traced out by during this process. Then find an equation of this
curve and use this equation to sketch the curve.

11. (a) If we start from latitude and proceed in a westerly direction, we can let denote 
the temperature at the point at any given time. Assuming that is a continuous function
of , show that at any fixed time there are at least two diametrically opposite points on
the equator that have exactly the same temperature.

(b) Does the result in part (a) hold for points lying on any circle on the earth’s surface?
(c) Does the result in part (a) hold for barometric pressure and for altitude above sea level?

12. If is a differentiable function and , use the definition of a derivative to show
that .

13. Suppose is a function that satisfies the equation

for all real numbers x and y. Suppose also that

(a) Find .      (b) Find .      (c) Find .

14. Suppose is a function with the property that for all x. Show that . Then
show that .

lim
xl 0

x !1"x#lim
xl 0

!x#
x

!x#

f !$0% ! 0
f $0% ! 0& f $x% & " x 2f

f !$x%f !$0%f $0%

lim
xl0

f $x%
x

! 1

f $x # y% ! f $x% # f $y% # x 2y # xy 2

f

t!$x% ! x f !$x% # f $x%
t$x% ! x f $x%f

x
Tx

T$x%0$

P
P

BCMA&AM &
BCPAC

B"B ! "CABC

limxla ' f $x% t$x%(limxla ' f $x% % t$x%( ! 1limxla ' f $x% # t$x%( ! 2

'0, 1('0, 1(

'0, 1('0, 1(
f'0, 1(

'0, 1(
c

f $c% ! ccf

f $x% ! )x # 1
x 2

if x " a
if x & a

f

!x# # !y# ! 1!x # y#2 ! 1!x#2 % !y#2 ! 3!x#2 # !y#2 ! 1

y ! x 2

lim
xl0

& 2x % 1 & % & 2x # 1 &
x

171

FIGURE FOR PROBLEM 4

0

PQ

y=≈

x

y

A

CB M

P

FIGURE FOR PROBLEM 10
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Differentiation Rules3

We have seen how to interpret derivatives as slopes and rates of change. We have seen how to estimate
derivatives of functions given by tables of values. We have learned how to graph derivatives of functions
that are defined graphically. We have used the definition of a derivative to calculate the derivatives of
functions defined by formulas. But it would be tedious if we always had to use the definition, so in this
chapter we develop rules for finding derivatives without having to use the definition directly. These differ-
entiation rules enable us to calculate with relative ease the derivatives of polynomials, rational functions,
algebraic functions, exponential and logarithmic functions, and trigonometric and inverse trigonometric
functions. We then use these rules to solve problems involving rates of change and the approximation of
functions.

173

© Brett Mulcahy / Shutterstock

For a roller coaster ride to be smooth, 
the straight stretches of the track need 
to be connected to the curved segments
so that there are no abrupt changes in
direction. In the project on page 184 
you will see how to design the first
ascent and drop of a new coaster for a
smooth ride.
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174 CHAPTER 3 DIFFERENTIATION RULES

3.1 Derivatives of Polynomials and Exponential Functions

In this section we learn how to differentiate constant functions, power functions, polyno-
mials, and exponential functions.

Let’s start with the simplest of all functions, the constant function . The graph
of this function is the horizontal line y ! c, which has slope 0, so we must have .
(See Figure 1.) A formal proof, from the definition of a derivative, is also easy:

In Leibniz notation, we write this rule as follows.

Derivative of a Constant Function

Power Functions
We next look at the functions , where n is a positive integer. If , the graph
of is the line y ! x, which has slope 1. (See Figure 2.) So

(You can also verify Equation 1 from the definition of a derivative.) We have already inves-
tigated the cases and . In fact, in Section 2.8 (Exercises 19 and 20) we found
that

For we find the derivative of as follows:

Thus

3
d
dx

!x 4 " ! 4x 3

! lim
h l 0

!4x 3 ! 6x 2h ! 4xh 2 ! h 3 " ! 4x 3

! lim
h l 0

4x 3h ! 6x 2h 2 ! 4xh 3 ! h 4

h

! lim
h l 0

x 4 ! 4x 3h ! 6x 2h 2 ! 4xh 3 ! h 4 " x 4

h

f #!x" ! lim
h l 0

f !x ! h" " f !x"
h

! lim
h l 0

!x ! h"4 " x 4

h

f !x" ! x 4n ! 4

d
dx

!x 3 " ! 3x 2d
dx

!x 2 " ! 2x2

n ! 3n ! 2

d
dx

!x" ! 11

f !x" ! x
n ! 1f !x" ! xn

d
dx

!c" ! 0

! lim
h l 0

0 ! 0f #!x" ! lim
h l 0

f !x ! h" " f !x"
h

! lim
h l 0

c " c
h

f #!x" ! 0
f !x" ! c

FIGURE 1
The graph of ƒ=c is the
line y=c, so fª(x)=0.

y

c

0 x

y=c
slope=0

y

0
x

y=x

slope=1

FIGURE 2 
The graph of ƒ=x is the
line y=x, so fª(x)=1.
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SECTION 3.1 DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS 175

Comparing the equations in , , and , we see a pattern emerging. It seems to be a rea-
sonable guess that, when n is a positive integer, . This turns out to be
true.

The Power Rule If n is a positive integer, then

FIRST PROOF The formula

can be verified simply by multiplying out the right-hand side (or by summing the second
factor as a geometric series). If , we can use Equation 2.7.5 for and the
equation above to write

SECOND PROOF

In finding the derivative of we had to expand . Here we need to expand
and we use the Binomial Theorem to do so:

because every term except the first has as a factor and therefore approaches 0.

We illustrate the Power Rule using various notations in Example 1.

(a) If , then . (b) If , then ! .

(c) If , then . (d)y ! t 4 dy
dt

! 4t 3 d
dr

!r 3 " ! 3r 2

f !x" ! x 6 f !!x" ! 6x 5 y ! x 1000 y! 1000x 999

EXAMPLE 1

h

! nxn" 1

! lim
hl 0

#nxn" 1 #
n!n " 1"

2
xn" 2h # $ $ $ # nxhn" 2 # hn" 1$

! lim
hl 0

nxn" 1h #
n!n " 1"

2
xn" 2h 2 # $ $ $ # nxhn" 1 # hn

h

f !!x" ! lim
hl 0

#xn # nxn" 1h #
n!n " 1"

2
xn" 2h 2 # $ $ $ # nxhn" 1 # hn$ " xn

h

!x # h"n
x 4 !x # h"4

f !!x" ! lim
hl 0

f !x # h" " f !x"
h

! lim
hl 0

!x # h"n " xn

h

! nan" 1

! an" 1 # an" 2a # $ $ $ # aan" 2 # an" 1

! lim
xl a

!xn" 1 # xn" 2a # $ $ $ # xan" 2 # an" 1 "

f !!a" ! lim
xl a

f !x" " f !a"
x " a

! lim
xl a

xn " an

x " a

f !x" ! xn f !!a"

xn " an ! !x " a"!xn" 1 # xn" 2a # $ $ $ # xan" 2 # an" 1"

d
dx

!xn " ! nxn" 1

!d%dx"!xn " ! nxn" 1
1 2 3

The Binomial Theorem is given on 
Reference Page 1.
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176 CHAPTER 3 DIFFERENTIATION RULES

What about power functions with negative integer exponents? In Exercise 61 we ask
you to verify from the definition of a derivative that

We can rewrite this equation as

and so the Power Rule is true when . In fact, we will show in the next section 
[Exercise 62(c)] that it holds for all negative integers.

What if the exponent is a fraction? In Example 3 in Section 2.8 we found that

which can be written as

This shows that the Power Rule is true even when . In fact, we will show in Sec-
tion 3.6 that it is true for all real numbers n.

The Power Rule (General Version) If n is any real number, then

Differentiate:

(a) (b) 

SOLUTION In each case we rewrite the function as a power of x.
(a) Since , we use the Power Rule with :

(b)

The Power Rule enables us to find tangent lines without having to resort to the defini-
tion of a derivative. It also enables us to find normal lines. The normal line to a curve at
a point is the line through that is perpendicular to the tangent line at . (In the study of
optics, one needs to consider the angle between a light ray and the normal line to a lens.)

Find equations of the tangent line and normal line to the curve
at the point . Illustrate by graphing the curve and these lines.!1, 1"
v EXAMPLE 3 y ! xsx

P
C

P P

dy
dx

!
d
dx

(s3 x 2 ) !
d
dx

!x 2#3" ! 2
3 x !2#3"!1 ! 2

3 x!1#3

f "!x" !
d
dx

!x!2" ! !2x!2!1 ! !2x!3 ! !
2
x 3

f !x" ! x!2 n ! !2

f !x" !
1
x 2 y ! s3 x 2

EXAMPLE 2

d
dx

!xn " ! nxn!1

n ! 1
2

d
dx

!x1#2" ! 1
2 x!1#2

d
dx

sx !
1

2sx

n ! !1

d
dx

!x!1" ! !!1"x!2

d
dx $1

x% ! !
1
x 2

2

_2

_3 3

y
yª

FIGURE 3
y=#œ„≈

Figure 3 shows the function in Example 2(b)
and its derivative . Notice that is not differ-
entiable at ( is not defined there). Observe
that is positive when increases and is neg-
ative when decreases.y

yy"
y"0

yy"
y
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SECTION 3.1 DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS 177

SOLUTION The derivative of is

So the slope of the tangent line at (1, 1) is . Therefore an equation of the tan-
gent line is

The normal line is perpendicular to the tangent line, so its slope is the negative recipro-
cal of , that is, . Thus an equation of the normal line is

We graph the curve and its tangent line and normal line in Figure 4.

New Derivatives from Old
When new functions are formed from old functions by addition, subtraction, or multiplica-
tion by a constant, their derivatives can be calculated in terms of derivatives of the old func-
tions. In particular, the following formula says that the derivative of a constant times a
function is the constant times the derivative of the function.

The Constant Multiple Rule If c is a constant and is a differentiable function, then

PROOF Let . Then

(by Law 3 of limits)

(a) 

(b) 

The next rule tells us that the derivative of a sum of functions is the sum of the 
derivatives.

The Sum Rule If f and t are both differentiable, then

d
dx

! f "x# ! t"x#$ !
d
dx

f "x# !
d
dx

t"x#

d
dx

""x# !
d
dx

!""1#x$ ! ""1#
d
dx

"x# ! "1"1# ! "1

d
dx

"3x 4 # ! 3
d
dx

"x 4 # ! 3"4x 3 # ! 12x 3

EXAMPLE 4

! cf #"x#

! c lim
h l 0

f "x ! h# " f "x#
h

! lim
h l 0

c% f "x ! h# " f "x#
h &

t#"x# ! lim
h l 0

t"x ! h# " t"x#
h

! lim
h l 0

cf "x ! h# " cf "x#
h

t"x# ! cf "x#

d
dx

!cf "x#$ ! c
d
dx

f "x#

f

y " 1 ! "2
3"x " 1# or y ! "2

3 x ! 5
3

3
2 "2

3

y " 1 ! 3
2 "x " 1# or y ! 3

2 x " 1
2

f #"1# ! 3
2

f #"x# ! 3
2 x "3'2#"1 ! 3

2 x 1'2 ! 3
2 sx

f "x# ! xsx ! xx 1'2 ! x 3'2

3

_1

_1 3

tangent

normal

FIGURE 4
y=x œx„

GEOMETRIC INTERPRETATION OF 
THE CONSTANT MULTIPLE RULE

x

y

0

y=2ƒ

y=ƒ

Multiplying by stretches the graph verti-
cally by a factor of 2. All the rises have been
doubled but the runs stay the same. So the
slopes are doubled too.

c ! 2

Using prime notation, we can write the 
Sum Rule as

" f ! t## ! f # ! t#
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178 CHAPTER 3 DIFFERENTIATION RULES

PROOF Let . Then

(by Law 1)

The Sum Rule can be extended to the sum of any number of functions. For instance,
using this theorem twice, we get

By writing as and applying the Sum Rule and the Constant Multiple
Rule, we get the following formula.

The Difference Rule If f and t are both differentiable, then

The Constant Multiple Rule, the Sum Rule, and the Difference Rule can be combined
with the Power Rule to differentiate any polynomial, as the following examples demonstrate.

Find the points on the curve where the tangent line is
horizontal.

SOLUTION Horizontal tangents occur where the derivative is zero. We have

! 4x 3 ! 12x " 0 ! 4x!x 2 ! 3"

dy
dx

!
d
dx

!x 4 " ! 6
d
dx

!x 2 " "
d
dx

!4"

v EXAMPLE 6 y ! x 4 ! 6x 2 " 4

! 8x 7 " 60x 4 ! 16x 3 " 30x 2 ! 6

! 8x 7 " 12!5x 4 " ! 4!4x 3 " " 10!3x 2 " ! 6!1" " 0

!
d
dx

!x 8 " " 12
d
dx

!x 5 " ! 4
d
dx

!x 4 " " 10
d
dx

!x 3 " ! 6
d
dx

!x" "
d
dx

!5"

d
dx

!x 8 " 12x 5 ! 4x 4 " 10x 3 ! 6x " 5"

EXAMPLE 5

d
dx

# f !x" ! t!x"$ !
d
dx

f !x" !
d
dx

t!x"

f ! t f " !!1"t

! f " t " h"# ! #! f " t" " h$# ! ! f " t"# " h# ! f # " t# " h#

! f #!x" " t#!x"

! lim
hl 0

f !x " h" ! f !x"
h

" lim
hl 0

t!x " h" ! t!x"
h

! lim
hl 0

% f !x " h" ! f !x"
h

"
t!x " h" ! t!x"

h &
! lim

hl 0

# f !x " h" " t!x " h"$ ! # f !x" " t!x"$
h

F#!x" ! lim
hl 0

F!x " h" ! F!x"
h

F!x" ! f !x" " t!x"
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SECTION 3.1 DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS 179

FIGURE 5
The curve y=x$-6x@+4 and
its horizontal tangents

0 x

y

(0, 4)

{œ„3, _5}{_œ„3, _5}

Thus if x ! 0 or , that is, . So the given curve has 
horizontal tangents when x ! 0, , and . The corresponding points are ,

, and . (See Figure 5.)

The equation of motion of a particle is , where is
measured in centimeters and  in seconds. Find the acceleration as a function of time.
What is the acceleration after 2 seconds?

SOLUTION The velocity and acceleration are

The acceleration after 2 s is .

Exponential Functions
Let’s try to compute the derivative of the exponential function using the defini-
tion of a derivative:

The factor doesn’t depend on h, so we can take it in front of the limit:

Notice that the limit is the value of the derivative of at , that is,

Therefore we have shown that if the exponential function is differentiable at 0,
then it is differentiable everywhere and

This equation says that the rate of change of any exponential function is proportional to the
function itself. (The slope is proportional to the height.)

Numerical evidence for the existence of is given in the table at the left for the 
cases and . (Values are stated correct to four decimal places.) It appears that the
limits exist and 

for a ! 3, f !!0" ! lim
h l 0

3h " 1
h

# 1.10

for a ! 2, f !!0" ! lim
h l 0

2h " 1
h

# 0.69

a ! 2 a ! 3
f !!0"

4 f !!x" ! f !!0"ax

f !x" ! ax

lim
h l 0

ah " 1
h

! f !!0"

f 0

f !!x" ! ax lim
h l 0

ah " 1
h

ax

! lim
h l 0

axah " ax

h
! lim

h l 0

ax!ah " 1"
h

f !!x" ! lim
h l 0

f !x # h" " f !x"
h

! lim
h l 0

ax# h " ax

h

f !x" ! ax

a!2" ! 14 cm$s2

a!t" !
dv
dt

! 12 t " 10

v!t" !
ds
dt

! 6t 2 " 10t # 3

t
EXAMPLE 7 s ! 2t 3 " 5t 2 # 3t # 4 s

(s3 , " 5) (" s3 , " 5)
s3 " s3 !0, 4"

dy$dx ! 0 x 2 " 3 ! 0 x ! $ s3

h

0.1 0.7177 1.1612
0.01 0.6956 1.1047
0.001 0.6934 1.0992
0.0001 0.6932 1.0987

3h " 1
h

2h " 1
h
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180 CHAPTER 3 DIFFERENTIATION RULES

In fact, it can be proved that these limits exist and, correct to six decimal places, the values
are

Thus, from Equation 4, we have

Of all possible choices for the base in Equation 4, the simplest differentiation formula
occurs when . In view of the estimates of for and , it seems rea-
sonable that there is a number between 2 and 3 for which . It is traditional to 
denote this value by the letter . (In fact, that is how we introduced e in Section 1.5.) Thus
we have the following definition.

Definition of the Number e

Geometrically, this means that of all the possible exponential functions , the func-
tion is the one whose tangent line at ( has a slope that is exactly 1. (See
Figures 6 and 7.)

If we put and, therefore, in Equation 4, it becomes the following impor-
tant differentiation formula.

Derivative of the Natural Exponential Function

Thus the exponential function has the property that it is its own derivative. The
geometrical significance of this fact is that the slope of a tangent line to the curve is
equal to the -coordinate of the point (see Figure 7).y

y ! ex
f !x" ! ex

d
dx

!ex " ! ex

a ! e f !!0" ! 1

FIGURE 7

0

y

1

x

slope=1

slope=e®

y=e®

{x, e ® }

0

y

1

x

y=2®

y=e®

y=3®

FIGURE 6

f !x" ! ex 0, 1" f !!0"
y ! ax

e is the number such that lim
hl 0

eh " 1
h

! 1

e
a f !!0" ! 1

f !!0" ! 1 f !!0" a ! 2 a ! 3
a

5
d
dx

!2x" # !0.69"2x d
dx

!3x" # !1.10"3x

d
dx

!2x " $
x!0

# 0.693147
d
dx

!3x" $
x!0

# 1.098612

In Exercise 1 we will see that lies between
and . Later we will be able to show that,

correct to five decimal places,
e # 2.71828

2.82.7
e

Visual 3.1 uses the slope-a-scope to 
illustrate this formula.
TEC
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SECTION 3.1 DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS 181

If , find and . Compare the graphs of and .

SOLUTION Using the Difference Rule, we have

In Section 2.8 we defined the second derivative as the derivative of , so

The function f and its derivative are graphed in Figure 8. Notice that has a horizon-
tal tangent when ; this corresponds to the fact that . Notice also that, 
for , is positive and is increasing. When , is negative and is
decreasing.

At what point on the curve is the tangent line parallel to the 
line ?

SOLUTION Since , we have . Let the x-coordinate of the point in question 
be a. Then the slope of the tangent line at that point is . This tangent line will be paral-
lel to the line if it has the same slope, that is, 2. Equating slopes, we get

Therefore the required point is . (See Figure 9.)

EXAMPLE 9

EXAMPLE 8v

!a, ea " ! !ln 2, 2"

a ! ln 2ea ! 2

y ! 2x
ea

y! ! exy ! ex
y ! 2x

y ! ex

ff !!x"x " 0ff !!x"x # 0
f !!0" ! 0x ! 0

ff !

f $!x" !
d
dx

!ex % 1" !
d
dx

!ex " %
d
dx

!1" ! ex

f !

f !!x" !
d
dx

!ex % x" !
d
dx

!ex" %
d
dx

!x" ! ex % 1

f !ff $f !f !x" ! ex % x

FIGURE 8 

3

_1

1.5_1.5

f

fª

FIGURE 9

1

1

0 x

2

3
y

y=´

y=2x

(ln 2, 2)

1. (a) How is the number e defined?
(b) Use a calculator to estimate the values of the limits

and    

correct to two decimal places. What can you conclude
about the value of e?

2. (a) Sketch, by hand, the graph of the function , pay-
ing particular attention to how the graph crosses the y-axis.
What fact allows you to do this?

(b) What types of functions are and ?
Compare the differentiation formulas for and t.

(c) Which of the two functions in part (b) grows more rapidly
when x is large?

3–32 Differentiate the function.

3. 4.

5. 6.

7. 8. f !t" ! 1.4t 5 % 2.5t 2 & 6.7f !x" ! x 3 % 4x & 6

F !x" ! 3
4 x 8f !t" ! 2 % 2

3 t

f !x" ! e 5f !x" ! 2 40

f
t!x" ! x ef !x" ! e x

f !x" ! e x

lim
hl 0

2.8h % 1
h

lim
hl 0

2.7h % 1
h

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

t!x" ! x 2!1 % 2x" h!x" ! !x % 2"!2x & 3"

t!t" ! 2t% 3#4 B!y" ! cy% 6

y ! aev &
b
v

&
c
v 2H!x" ! !x & x% 1"3

k!r" ! e r & r ej!x" ! x 2.4 & e 2.4

t!u" ! s2 u & s3uy !
x 2 & 4x & 3

sx

y !
sx & x
x 2h!u" ! Au 3 & Bu 2 & Cu

S!R" ! 4'R 2y ! 3e x &
4

s3 x

y ! sx !x % 1"S! p" ! sp % p

h!t" ! s4 t % 4e tR!a" ! !3a & 1"2

y ! x 5#3 % x 2#3A!s" ! %
12
s 5

3.1 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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182 CHAPTER 3 DIFFERENTIATION RULES

29. 30.

31. 32.

33–34 Find an equation of the tangent line to the curve at the
given point.

33. ,  34. ,  

35–36 Find equations of the tangent line and normal line to the
curve at the given point.

35. ,  36. ,  

; 37–38 Find an equation of the tangent line to the curve at the
given point. Illustrate by graphing the curve and the tangent line
on the same screen.

37. , 38. ,  

; 39–40 Find . Compare the graphs of and and use them
to explain why your answer is reasonable.

39. 40.

; 41. (a) Use a graphing calculator or computer to graph the func-
tion in the viewing
rectangle by .

(b) Using the graph in part (a) to estimate slopes, make 
a rough sketch, by hand, of the graph of . (See 
Example 1 in Section 2.8.)

(c) Calculate and use this expression, with a graphing
device, to graph . Compare with your sketch in part (b).

; 42. (a) Use a graphing calculator or computer to graph the func-
tion in the viewing rectangle 
by .

(b) Using the graph in part (a) to estimate slopes, make 
a rough sketch, by hand, of the graph of . (See
Example 1 in Section 2.8.)

(c) Calculate and use this expression, with a graphing
device, to graph . Compare with your sketch in part (b).

43–44 Find the first and second derivatives of the function.

43. 44.

; 45–46 Find the first and second derivatives of the function.
Check to see that your answers are reasonable by comparing the
graphs of , , and .

45. 46.f !x" ! 2x ! 5x 3#4 f !x" ! e x ! x 3

f f " f #

f !x" ! 10x 10 $ 5x 5 ! x G !r" ! sr $ s3 r

t"
t"!x"

t"

$!8, 8%
t!x" ! e x ! 3x 2 $!1, 4%

f "
f "!x"

f "

$!3, 5% $!10, 50%
f !x" ! x 4 ! 3x 3 ! 6x 2 $ 7x $ 30

f !x" ! x 4 ! 2x 3 $ x 2 f !x" ! x 5 ! 2x 3 $ x ! 1

f "!x" f f "

y ! 3x2 ! x3 !1, 2" y ! x ! sx !1, 0"

y ! x4 $ 2e x !0, 2" y ! x 2 ! x 4 !1, 0"

y ! s4 x !1, 1" y ! x 4 $ 2x 2 ! x !1, 2"

z !
A
y10 $ Bey y ! e x$ 1 $ 1

u ! s5 t $ 4st 5 v ! &sx $
1

s3 x '
2 47. The equation of motion of a particle is , where

is in meters and is in seconds. Find
(a) the velocity and acceleration as functions of ,
(b) the acceleration after 2 s, and
(c) the acceleration when the velocity is 0.

48. The equation of motion of a particle is 
, where is in meters and is in

seconds.
(a) Find the velocity and acceleration as functions of .
(b) Find the acceleration after 1 s.

; (c) Graph the position, velocity, and acceleration functions 
on the same screen.

49. Boyle’s Law states that when a sample of gas is compressed
at a constant pressure, the pressure of the gas is inversely
proportional to the volume of the gas.
(a) Suppose that the pressure of a sample of air that occupies

at is . Write as a function of .
(b) Calculate when . What is the meaning

of the derivative? What are its units?

; 50. Car tires need to be inflated properly because overinflation or
underinflation can cause premature treadware. The data in the
table show tire life ( in thousands of miles) for a certain
type of tire at various pressures ( in ).

(a) Use a graphing calculator or computer to model tire life
with a quadratic function of the pressure.

(b) Use the model to estimate when and when
. What is the meaning of the derivative? What are

the units? What is the significance of the signs of the
derivatives?

51. Find the points on the curve
where the tangent is horizontal.

52. For what value of does the graph of have a
horizontal tangent?

53. Show that the curve has no tangent line
with slope 2.

54. Find an equation of the tangent line to the curve
that is parallel to the line .

55. Find equations of both lines that are tangent to the curve
and parallel to the line .

; 56. At what point on the curve is the tangent
line parallel to the line ? Illustrate by graphing
the curve and both lines.

57. Find an equation of the normal line to the parabola
that is parallel to the line .y ! x 2 ! 5x $ 4 x ! 3y ! 5

t
ss ! t 3 ! 3t

3x ! y ! 5
y ! 1 $ 2e x ! 3x

y ! 1 $ x 3 12x ! y ! 1

y ! 1 $ 3x
y ! xsx

y ! 2e x $ 3x $ 5x 3

x f !x" ! e x ! 2x

y ! 2x 3 $ 3x 2 ! 12x $ 1

P ! 40
dL#dP P ! 30

P lb#in2
L

dV#dP P ! 50 kPa
0.106 m3 25%C 50 kPa V P

V
P

t

s ! t 4 ! 2t 3 $ t 2 ! t s t

t

P 26 28 31 35 38 42 45

L 50 66 78 81 74 70 59
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SECTION 3.1 DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS 183

58. Where does the normal line to the parabola at the
point (1, 0) intersect the parabola a second time? Illustrate with
a sketch.

59. Draw a diagram to show that there are two tangent lines to the
parabola that pass through the point . Find the
coordinates of the points where these tangent lines intersect the
parabola.

60. (a) Find equations of both lines through the point that
are tangent to the parabola .

(b) Show that there is no line through the point that is
tangent to the parabola. Then draw a diagram to see why.

61. Use the definition of a derivative to show that if ,
then . (This proves the Power Rule for the 
case .)

62. Find the derivative of each function by calculating the first
few derivatives and observing the pattern that occurs.
(a) (b)

63. Find a second-degree polynomial such that ,
, and .

64. The equation is called a differential equa-
tion because it involves an unknown function and its deriv-
atives and . Find constants such that the 
function satisfies this equation. (Differen-
tial equations will be studied in detail in Chapter 9.)

65. Find a cubic function whose graph
has horizontal tangents at the points and .

66. Find a parabola with equation that has 
slope 4 at , slope at , and passes through the
point .

67. Let

Is differentiable at 1? Sketch the graphs of and .

68. At what numbers is the following function differentiable?

Give a formula for and sketch the graphs of and .

y ! x ! x 2

t" t t"

t!x" ! #2x
2x ! x 2

2 ! x

if x # 0
if 0 $ x $ 2
if x % 2

t
f f f "

f !x" ! #x 2 & 1
x & 1

if x $ 1
if x % 1

!2, 15"
x ! 1 !8 x ! !1

y ! ax 2 & bx & c

!!2, 6" !2, 0"
y ! ax 3 & bx 2 & cx & d

y ! Ax 2 & Bx & C
y" y ' A, B, and C

y
y ' & y" ! 2y ! x 2

P"!2" ! 3 P '!2" ! 2
P P!2" ! 5

f !x" ! xn f !x" ! 1$x

nth

n ! !1
f "!x" ! !1$x 2

f !x" ! 1$x

!2, 7"
y ! x 2 & x

!2, !3"

y ! x 2 !0, !4"

69. (a) For what values of is the function
differentiable? Find a formula for .

(b) Sketch the graphs of and .

70. Where is the function differenti -
able? Give a formula for and sketch the graphs of and .

71. Find the parabola with equation whose tangent
line at (1, 1) has equation .

72. Suppose the curve has a tan-
gent line when with equation and a tangent
line when with equation . Find the values 
of , , , and .

73. For what values of and is the line tangent to
the parabola when ?

74. Find the value of such that the line is tangent to
the curve .

75. Let

Find the values of and that make differentiable
everywhere.

76. A tangent line is drawn to the hyperbola at a point .
(a) Show that the midpoint of the line segment cut from this

tangent line by the coordinate axes is .
(b) Show that the triangle formed by the tangent line and the

coordinate axes always has the same area, no matter where
is located on the hyperbola.

77. Evaluate .

78. Draw a diagram showing two perpendicular lines that intersect
on the -axis and are both tangent to the parabola .
Where do these lines intersect?

79. If , how many lines through the point are normal
lines to the parabola ? What if ?

80. Sketch the parabolas and . Do you
think there is a line that is tangent to both curves? If so, find its
equation. If not, why not?

f f "
f "

x f !x" ! % x 2 ! 9 %

h!x" ! % x ! 1 % & % x & 2 %

y ! x 2 ! 2x & 2y ! x 2

c # 1
2y ! x 2

!0, c"c ( 1
2

y ! x 2y

lim
xl 1

x 1000 ! 1
x ! 1

P

P

Pxy ! c

fbm

f !x" ! #x 2

mx & b
if x # 2
if x ( 2

y ! csx
y ! 3

2 x & 6c

x ! 2y ! ax 2
2x & y ! bba

dcba
y ! 2 ! 3xx ! 1

y ! 2x & 1x ! 0
y ! x 4 & ax 3 & bx 2 & cx & d

y ! 3x ! 2
y ! ax 2 & bx

h"hh"
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184 CHAPTER 3 DIFFERENTIATION RULES

The formulas of this section enable us to differentiate new functions formed from old func-
tions by multiplication or division.

The Product Rule
| By analogy with the Sum and Difference Rules, one might be tempted to guess, as Leibniz

did three centuries ago, that the derivative of a product is the product of the derivatives. We
can see, however, that this guess is wrong by looking at a particular example. Let
and . Then the Power Rule gives and . But , so

. Thus . The correct formula was discovered by Leibniz (soon
after his false start) and is called the Product Rule.
! ft"!!x" ! 3x 2 ! ft"! " f !t!

t!x" ! x 2 f !!x" ! 1 t!!x" ! 2x ! ft"!x" ! x 3
f !x" ! x

3.2 The Product and Quotient Rules

A P P L I E D  P R O J E C T BUILDING A BETTER ROLLER COASTER

Suppose you are asked to design the first ascent and drop for a new roller coaster. By studying
photographs of your favorite coasters, you decide to make the slope of the ascent 0.8 and the slope
of the drop . You decide to connect these two straight stretches and with
part of a parabola , where and are measured in feet. For the track
to be smooth there can’t be abrupt changes in direction, so you want the linear segments and
to be tangent to the parabola at the transition points and . (See the figure.) To simplify the
equations, you decide to place the origin at .

1. (a) Suppose the horizontal distance between and is 100 ft. Write equations in , ,
and that will ensure that the track is smooth at the transition points.

(b) Solve the equations in part (a) for to find a formula for .
; (c) Plot , , and to verify graphically that the transitions are smooth.

(d) Find the difference in elevation between and .

2. The solution in Problem 1 might look smooth, but it might not feel smooth because the
piecewise defined function [consisting of for , for , and

for ] doesn’t have a continuous second derivative. So you decide to improve
the design by using a quadratic function only on the interval

and connecting it to the linear functions by means of two cubic functions:

(a) Write a system of equations in 11 unknowns that ensure that the functions and their
first two derivatives agree at the transition points.

(b) Solve the equations in part (a) with a computer algebra system to find formulas for
.

(c) Plot , , , , and , and compare with the plot in Problem 1(c).L1 t q h L 2

q!x", t!x", and h!x"
CAS

h!x" ! px 3 " qx 2 " rx " s 90 # x $ 100

t!x" ! kx 3 " lx 2 " mx " n 0 $ x # 10

10 $ x $ 90
q!x" ! ax 2 " bx " c

L 2!x" x % 100
L1!x" x # 0 f !x" 0 $ x $ 100

P Q
L1 f L 2

a, b, and c f !x"
c

P Q a b

P
P Q

L1 L 2

y ! f !x" ! ax 2 " bx " c x f !x"
& 1.6 y ! L1!x" y ! L 2!x"

; Graphing calculator or computer required

Computer algebra system requiredCAS

L™

L¡ P
f

Q

©
 Fl

as
ho

n 
St

ud
io

 / 
Sh

ut
te

rs
to

ck
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SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 185

Before stating the Product Rule, let’s see how we might discover it. We start by assum-
ing that and are both positive differentiable functions. Then we can 
interpret the product as an area of a rectangle (see Figure 1). If x changes by an amount

, then the corresponding changes in u and are

and the new value of the product, , can be interpreted as the area of the
large rectangle in Figure 1 (provided that and happen to be positive).

The change in the area of the rectangle is

If we divide by , we get

If we now let , we get the derivative of :

(Notice that as since is differentiable and therefore continuous.)
Although we started by assuming (for the geometric interpretation) that all the quanti-

ties are positive, we notice that Equation 1 is always true. (The algebra is valid whether u,
, , and are positive or negative.) So we have proved Equation 2, known as the 

Product Rule, for all differentiable functions u and .

The Product Rule If and are both differentiable, then

In words, the Product Rule says that the derivative of a product of two functions is the
first function times the derivative of the second function plus the second function times the
derivative of the first function.

u ! f !x" v ! t!x"

! the sum of the three shaded areas

1 !!uv" ! !u " !u"!v " !v" # uv ! u !v " v !u " !u !v

!u !v
!u " !u"!v " !v"

!u ! f !x " !x" # f !x" !v ! t!x " !x" # t!x"

!x v
uv

!!uv"
!x

! u
!v
!x

" v
!u
!x

" !u
!v
!x

!x

d
dx

# f !x"t!x"$ ! f !x"
d
dx

#t!x"$ " t!x"
d
dx

# f !x"$

tf

v
!v!uv

f!x l 0!u l 0

d
dx

!uv" ! u
dv
dx

" v
du
dx

2

! u
dv
dx

" v
du
dx

" 0 !
dv
dx

! u lim
!x l 0

!v
!x

" v lim
!x l 0

!u
!x

" % lim
!x l 0

!u&% lim
!x l 0

!v
!x&

d
dx

!uv" ! lim
!x l 0

!!uv"
!x

! lim
!x l 0

%u
!v
!x

" v
!u
!x

" !u
!v
!x&

uv!x l 0

u Î√Î√

√ u√

u

Îu Î√

√ Îu

Îu

FIGURE 1
The geometry of the Product Rule

In prime notation:

! ft"$ ! ft$ " t f $

Recall that in Leibniz notation the definition of 
a derivative can be written as

dy
dx

! lim
!x l 0

!y
!x
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186 CHAPTER 3 DIFFERENTIATION RULES

(a) If , find .
(b) Find the derivative, .

SOLUTION
(a) By the Product Rule, we have

(b) Using the Product Rule a second time, we get

Further applications of the Product Rule give

In fact, each successive differentiation adds another term , so

Differentiate the function .

SOLUTION 1 Using the Product Rule, we have

SOLUTION 2 If we first use the laws of exponents to rewrite , then we can proceed 
directly without using the Product Rule.

which is equivalent to the answer given in Solution 1.

Example 2 shows that it is sometimes easier to simplify a product of functions before dif-
ferentiating than to use the Product Rule. In Example 1, however, the Product Rule is the
only possible method.

EXAMPLE 2

f !!t" ! 1
2at" 1#2 # 3

2bt 1#2

f !t" ! ast # btst ! at 1#2 # bt 3#2

f !t"

! bst #
a # bt
2st !

a # 3bt
2st

! st ! b # !a # bt" ! 1
2 t " 1#2

f !!t" ! st d
dt

!a # bt" # !a # bt"
d
dt

(st )

f !t" ! st !a # bt"

nth f !n"!x"
f !x" ! xex f !!x"

EXAMPLE 1

f !!x" !
d
dx

!xex "

! !x # 1"ex # ex ! 1 ! !x # 2"ex

! !x # 1"
d
dx

!ex " # ex
d
dx

!x # 1"

f $!x" !
d
dx

$!x # 1"ex%

! xex # ex % 1 ! !x # 1"ex

! x
d
dx

!ex " # ex
d
dx

!x"

f &!x" ! !x # 3"ex f !4"!x" ! !x # 4"ex

f !n"!x" ! !x # n"ex
ex

3

_1

_3 1.5
ff ª

FIGURE 2

Figure 2 shows the graphs of the function 
of Example 1 and its derivative . Notice that

is positive when is increasing and nega-
tive when is decreasing.f

ff !!x"
f !

f

In Example 2, and are constants. It is 
customary in mathematics to use letters near
the beginning of the alphabet to represent con-
stants and letters near the end of the alphabet
to represent variables.

ba
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SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 187

If , where and , find 

SOLUTION Applying the Product Rule, we get

So

The Quotient Rule
We find a rule for differentiating the quotient of two differentiable functions and

in much the same way that we found the Product Rule. If , , and change by
amounts , , and , then the corresponding change in the quotient is

so

As , also, because is differentiable and therefore continuous. Thus,
using the Limit Laws, we get

The Quotient Rule If and are differentiable, then

In words, the Quotient Rule says that the derivative of a quotient is the denominator
times the derivative of the numerator minus the numerator times the derivative of the 
denominator, all divided by the square of the denominator.

The Quotient Rule and the other differentiation formulas enable us to compute the 
derivative of any rational function, as the next example illustrates.

d
dx ! f " x#

t" x# $ !
t" x#

d
dx

% f " x#& ! f " x#
d
dx

% t" x#&

% t" x#& 2

tf

d
dx'u

v( !
v lim

"x l 0

"u
"x

! u lim
"x l 0

"v
"x

v lim
"x l 0

"v # "v#
!

v
du
dx

! u
dv
dx

v2

v ! t" x#"v l 0"x l 0

d
dx' u

v( ! lim
"x l 0

""u)v#
"x

! lim
"x l 0

v
"u
"x

! u
"v
"x

v"v # "v#

!
v"u ! u"v
v"v # "v#

"'u
v( !

u # "u
v # "v

!
u
v

!
"u # "u#v ! u"v # "v#

v"v # "v#

u)v"v"u"x
vuxv ! t" x#

u ! f " x#

EXAMPLE 3

f $"4# ! s4 t$"4# #
t"4#
2s4

! 2 % 3 #
2

2 % 2
! 6.5

! sx t$" x# #
t" x#
2sx

! sx t$" x# # t" x# % 1
2 x!1)2

f $" x# !
d
dx

[sx t" x#] ! sx
d
dx

% t" x#& # t" x#
d
dx

[sx ]

f $"4#.t$"4# ! 3t"4# ! 2f " x# ! sx t" x#

In prime notation:

' f
t($

!
t f $ ! ft$

t2

97909_03_ch03_p182-191.qk:97909_03_ch03_p182-191  9/21/10  9:52 AM  Page 187

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).  
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



188 CHAPTER 3 DIFFERENTIATION RULES

Let . Then

Find an equation of the tangent line to the curve at the 
point .

SOLUTION According to the Quotient Rule, we have

So the slope of the tangent line at is

This means that the tangent line at is horizontal and its equation is . See 
Figure 4. Notice that the function is increasing and crosses its tangent line at .

NOTE Don’t use the Quotient Rule every time you see a quotient. Sometimes it’s easier
to rewrite a quotient first to put it in a form that is simpler for the purpose of differentiation.
For instance, although it is possible to differentiate the function

using the Quotient Rule, it is much easier to perform the division first and write the func-
tion as

before differentiating.
We summarize the differentiation formulas we have learned so far as follows.

]
[

!
ex!1 ! x"2

!1 " x 2 "2

F!x" ! 3x " 2x!1#2

F!x" !
3x 2 " 2sx

x

EXAMPLE 5v

EXAMPLE 4v

!
!x 4 ! 2x 3 " 6x 2 " 12x " 6

!x 3 " 6"2

!
!2x 4 " x 3 " 12x " 6" ! !3x 4 " 3x 3 ! 6x 2 "

!x 3 " 6"2

!
!x 3 " 6"!2x " 1" ! !x 2 " x ! 2"!3x 2 "

!x 3 " 6"2

y# !
!x 3 " 6"

d
dx

!x 2 " x ! 2" ! !x 2 " x ! 2"
d
dx

!x 3 " 6"

!x 3 " 6"2

y !
x 2 " x ! 2
x 3 " 6

dy
dx

!
!1 " x 2 "

d
dx

!ex " ! ex
d
dx

!1 " x 2 "

!1 " x 2 "2

(1, 1
2e)

y ! ex#!1 " x 2 "

(1, 1
2e)

y ! 1
2e(1, 1

2e)

dy
dx $

x!1
! 0

(1, 1
2e)

!
!1 " x 2 "ex ! ex!2x"

!1 " x 2 "2

We can use a graphing device to check that 
the answer to Example 4 is plausible. Figure 3
shows the graphs of the function of Example 4
and its derivative. Notice that when grows 
rapidly (near ), is large. And when 
grows slowly, is near .0y#

yy#!2
y

1.5

_1.5

_4 4

yª

y

FIGURE 3

2.5

0_2 3.5

y= ´
1+≈

FIGURE 4 

y= e1
2
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SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 189

1. Find the derivative of in two ways:
by using the Product Rule and by performing the multiplication
first. Do your answers agree?

2. Find the derivative of the function

in two ways: by using the Quotient Rule and by simplifying
first. Show that your answers are equivalent. Which method do
you prefer?

3–26 Differentiate.

3. 4.

5. 6.

7. 8.

9.

10.

11.

12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

t!t" !
t ! st
t 1#3

f !x" !
A

B " Cex
f !x" !

1 ! xe x

x " e x

f !t" !
2t

2 " st

z ! w 3#2!w " cew"y !
v3 ! 2vsv

v

y !
1

s " kes
y ! ep(p " psp )

y !
t

!t ! 1"2y !
t 2 " 2

t 4 ! 3t 2 " 1

y !
x " 1

x 3 " x ! 2
y !

x 3

1 ! x 2

f !z" ! !1 ! e z"!z " e z"

F!y" ! $ 1
y2 !

3
y4%!y " 5y3"

J!v" ! !v 3 ! 2v"!v!4 " v!2"

H!u" ! (u ! su )(u " su )

G!x" !
x 2 ! 2
2x " 1

t!x" !
1 " 2x
3 ! 4x

y !
e x

1 ! e x
y !

x
e x

t!x" ! sx e xf !x" ! !x 3 " 2x"e x

F!x" !
x 4 ! 5x 3 " sx

x 2

f !x" ! !1 " 2x 2"!x ! x 2" 25. 26.

27–30 Find and .

27. 28.

29. 30.

31–32 Find an equation of the tangent line to the given curve at the
specified point.

31. ,  32. ,  

33–34 Find equations of the tangent line and normal line to the
given curve at the specified point.

33. ,  34. ,  

35. (a) The curve is called a witch of Maria
Agnesi. Find an equation of the tangent line to this curve at
the point .

; (b) Illustrate part (a) by graphing the curve and the tangent line
on the same screen.

36. (a) The curve is called a serpentine. Find 
an equation of the tangent line to this curve at the point

.
; (b) Illustrate part (a) by graphing the curve and the tangent line

on the same screen.

37. (a) If , find .
; (b) Check to see that your answer to part (a) is reasonable by

comparing the graphs of and .

38. (a) If , find .
; (b) Check to see that your answer to part (a) is reasonable by

comparing the graphs of and .f f #

f !x" ! e x#!2x 2 " x " 1" f #!x"

f f #

f !x" ! !x 3 ! x"e x f #!x"

!3, 0.3"

y ! x#!1 " x 2 "

(!1, 1
2 )

y ! 1#!1 " x2"

y !
2x

x 2 " 1
!1, 1"!0, 0"y ! 2xe x

y !
x 2 ! 1

x 2 " x " 1
!1, e"y !

e x

x
!1, 0"

f !x" !
x

x 2 ! 1
f !x" !

x 2

1 " 2x

f !x" ! x 5#2e xf !x" ! x 4e x
f $!x"f #!x"

f !x" !
ax " b
cx " d

f !x" !
x

x "
c
x

3.2 Exercises

Table of Differentiation Formulas
d
dx

!c" ! 0
d
dx

!xn " ! nxn!1 d
dx

!ex " ! ex

$ ft%#
!

tf # ! ft#

t2! ft"# ! ft# " tf #

! f ! t"# ! f #! t#! f " t"# ! f #" t#!cf "# ! cf #

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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190 CHAPTER 3 DIFFERENTIATION RULES

39. (a) If , find and .
; (b) Check to see that your answers to part (a) are reasonable

by comparing the graphs of , , and .

40. (a) If , find and .
; (b) Check to see that your answers to part (a) are reasonable

by comparing the graphs of , , and .

41. If , find .

42. If , find .

43. Suppose that , , , and .
Find the following values.
(a) (b) (c)

44. Suppose that , , , and
. Find .

(a) (b)

(c) (d)

45. If , where and , find .

46. If and , find

47. If , where and , find an
equation of the tangent line to the graph of at the point
where .

48. If and for all , find .

49. If and are the functions whose graphs are shown, let
and .

(a) Find (b) Find 

50. Let and , where and
are the functions whose graphs are shown.
(a) Find . (b) Find .

F

G

x

y

0 1

1

P!!2" Q!!7"

P!x" ! F!x"G!x" Q!x" ! F!x"#G!x" F G

f
g

x

y

0

1

1

v!!5".u!!1".
v!x" ! f !x"#t!x"u!x" ! f !x"t!x"

tf

f "!2"xf !!x" ! x 2 f !x"f !2" ! 10

x ! 3
t

f !!3" ! # 2f !3" ! 4t!x" ! x f !x"

d
dx $h!x"

x %&
x!2

h!!2" ! # 3h!2" ! 4

f !!0"t!!0" ! 5t!0" ! 2f !x" ! e xt!x"

h!x" !
t!x"

1 $ f !x"
h!x" !

f !x"
t!x"

h!x" ! f !x"t!x"h!x" ! 5f !x" # 4t!x"
h!!2"t!!2" ! 7

f !!2" ! # 2t!2" ! 4f !2" ! # 3

!t#f "!!5"! f#t"!!5"! ft"!!5"

t!!5" ! 2t!5" ! # 3f !!5" ! 6f !5" ! 1

t !n"!x"t!x" ! x#e x
f "!1"f !x" ! x 2#!1 $ x"

f "f !f

f "!x"f !!x"f !x" ! !x 2 # 1"e x
f "f !f

f "!x"f !!x"f !x" ! !x 2 # 1"#!x 2 $ 1" 51. If is a differentiable function, find an expression for the 
derivative of each of the following functions.

(a) (b) (c)

52. If is a differentiable function, find an expression for the
derivative of each of the following functions.

(a) (b)

(c) (d)

53. How many tangent lines to the curve ) pass
through the point ? At which points do these tangent
lines touch the curve?

54. Find equations of the tangent lines to the curve

that are parallel to the line .

55. Find , where

Hint: Instead of finding first, let be the numerator
and the denominator of and compute from

, , , and .

56. Use the method of Exercise 55 to compute , where

57. In this exercise we estimate the rate at which the total
personal income is rising in the Richmond-Petersburg,
Virginia, metropolitan area. In 1999, the population of this
area was 961,400, and the population was increasing at
roughly 9200 people per year. The average annual income
was $30,593 per capita, and this average was increasing at
about $1400 per year (a little above the national average of
about $1225 yearly). Use the Product Rule and these figures
to estimate the rate at which total personal income was rising
in the Richmond-Petersburg area in 1999. Explain the mean-
ing of each term in the Product Rule.

58. A manufacturer produces bolts of a fabric with a fixed width.
The quantity q of this fabric (measured in yards) that is sold
is a function of the selling price p ( in dollars per yard), so we
can write . Then the total revenue earned with sell-
ing price p is .
(a) What does it mean to say that and

?
(b) Assuming the values in part (a), find and interpret

your answer.

t

R!!20"
f !!20" ! # 350

f !20" ! 10,000
R!p" ! pf !p"

q ! f !p"

Q!x" !
1 $ x $ x 2 $ xe x

1 # x $ x 2 # xe x

Q!!0"

t!!0"t!0"f !!0"f !0"
R!!0"R!x"t!x"

f !x"R!!x"

R!x" !
x # 3x 3 $ 5x 5

1 $ 3x 3 $ 6x 6 $ 9x 9

R!!0"

x # 2y ! 2

y !
x # 1
x $ 1

!1, 2"
y ! x#!x $ 1

y !
1 $ x f !x"

sxy !
x 2

f !x"

y !
f !x"
x 2y ! x 2 f !x"

f

y !
t!x"
x

y !
x

t!x"
y ! xt!x"
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SECTION 3.3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS 191

59. (a) Use the Product Rule twice to prove that if , , and are
differentiable, then .

(b) Taking in part (a), show that

(c) Use part (b) to differentiate .

60. (a) If , where and have derivatives of all
orders, show that .

(b) Find similar formulas for and .
(c) Guess a formula for .

61. Find expressions for the first five derivatives of .
Do you see a pattern in these expressions? Guess a formula for

and prove it using mathematical induction.f !n"!x"

f !x" ! x 2e x
F !n"

F! F !4"
F " ! f "t # 2 f $t$ # ft "

F!x" ! f !x" t!x" f t

! fth"$ ! f $th # ft$h # fth$
f t h

y ! e 3x

d
dx

# f !x"$3 ! 3# f !x"$2 f $!x"

f ! t ! h

62. (a) If t is differentiable, the Reciprocal Rule says that

Use the Quotient Rule to prove the Reciprocal Rule.
(b) Use the Reciprocal Rule to differentiate the function in

Exercise 18.
(c) Use the Reciprocal Rule to verify that the Power Rule is

valid for negative integers, that is,

for all positive integers .

d
dx % 1

t!x"& ! %
t$!x"

#t!x"$2

n

d
dx

!x% n" ! % nx% n% 1

Before starting this section, you might need to review the trigonometric functions. In par-
ticular, it is important to remember that when we talk about the function defined for all
real numbers by

it is understood that means the sine of the angle whose radian measure is . A simi-
lar convention holds for the other trigonometric functions cos, tan, csc, sec, and cot. Recall
from Section 2.5 that all of the trigonometric functions are continuous at every number in
their domains.

If we sketch the graph of the function and use the interpretation of 
as the slope of the tangent to the sine curve in order to sketch the graph of (see Exer-
cise 16 in Section 2.8), then it looks as if the graph of may be the same as the cosine curve
(see Figure 1).

FIGURE 1 

x0 2π

x0 π
2

π

π
2

π

ƒ=y= sin x

y

y

fª(xy= )

f $
f $

f $!x"f !x" ! sin x

xsin x

f !x" ! sin x

x
f

3.3 Derivatives of Trigonometric Functions

A review of the trigonometric functions is given
in Appendix D.

Visual 3.3 shows an animation 
of Figure 1.
TEC
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192 CHAPTER 3 DIFFERENTIATION RULES

Let’s try to confirm our guess that if , then . From the defini-
tion of a derivative, we have

Two of these four limits are easy to evaluate. Since we regard x as a constant when com-
puting a limit as , we have

The limit of is not so obvious. In Example 3 in Section 2.2 we made the guess, 
on the basis of numerical and graphical evidence, that

We now use a geometric argument to prove Equation 2. Assume first that lies between 
0 and . Figure 2(a) shows a sector of a circle with center O, central angle , and 
radius 1. BC is drawn perpendicular to OA. By the definition of radian measure, we have
arc . Also . From the diagram we see that

Therefore so    

Let the tangent lines at and intersect at . You can see from Figure 2(b) that the 
cir cumference of a circle is smaller than the length of a circumscribed polygon, and so
arc . Thus

(In Appendix F the inequality is proved directly from the definition of the length ! " tan !

! tan !

! !AD ! ! !OA ! tan !

# !AE ! $ !ED !
! ! arc AB # !AE ! $ !EB !

AB # !AE ! $ !EB !
EBA

sin !

!
# 1sin ! # !

!BC ! # !AB ! # arc AB

!BC ! ! !OB ! sin ! ! sin !AB ! !

!%"2
!

lim
! l 0

sin !

!
! 12

#sin h$"h

lim
hl 0

cos x ! cos xandlim
hl 0

sin x ! sin x

h l 0

! lim
hl 0

sin x ! lim
hl 0

cos h & 1
h

$ lim
hl 0

cos x ! lim
hl 0

sin h
h

1

! lim
hl 0

%sin x & cos h & 1
h ' $ cos x & sin h

h '(
! lim

hl 0
% sin x cos h & sin x

h
$

cos x sin h
h (

! lim
hl 0

sin x cos h $ cos x sin h & sin x
h

! lim
hl 0

sin#x $ h$ & sin x
h

f '#x$ ! lim
hl 0

f#x $ h$ & f #x$
h

f '#x$ ! cos xf#x$ ! sin x

We have used the addition formula for sine.
See Appendix D.

FIGURE 2

(b)

(a)

B

A
E

O

¨

B

A
O

1

D

E

C
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SECTION 3.3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS 193

of an arc without resorting to geometric intuition as we did here.) Therefore we have

so

We know that and , so by the Squeeze Theorem, we have

But the function is an even function, so its right and left limits must be equal.
Hence, we have

so we have proved Equation 2.
We can deduce the value of the remaining limit in as follows:

(by Equation 2)

If we now put the limits and in , we get

So we have proved the formula for the derivative of the sine function:

4
d
dx

!sin x" ! cos x

132

1

! !sin x" ! 0 ! !cos x" ! 1 ! cos x

f "!x" ! lim
hl 0

sin x ! lim
hl 0

cos h # 1
h

! lim
hl 0

cos x ! lim
hl 0

sin h
h

lim
$ l 0

cos $ # 1
$

! 03

! # 1 ! # 0
1 ! 1$ ! 0

! # lim
$ l 0

sin $

$
! lim

$ l 0

sin $

cos $ ! 1

! lim
$ l 0

# sin2$

$ !cos $ ! 1"
! # lim

$ l 0
# sin $

$
!

sin $

cos $ ! 1$
lim
$ l 0

cos $ # 1
$

! lim
$ l 0

# cos $ # 1
$

!
cos $ ! 1
cos $ ! 1$ ! lim

$ l 0

cos2$ # 1
$ !cos $ ! 1"

lim
$ l 0

sin $

$
! 1

!sin $"%$

lim
$l0!

sin $

$
! 1

lim $ l 0 cos $ ! 1lim $ l 0 1 ! 1

cos $ %
sin $

$
% 1

$ %
sin $

cos $

We multiply numerator and denominator by
in order to put the function in a form

in which we can use the limits we know.
cos $ ! 1
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194 CHAPTER 3 DIFFERENTIATION RULES

Differentiate .

SOLUTION Using the Product Rule and Formula 4, we have

Using the same methods as in the proof of Formula 4, one can prove (see Exercise 20)
that

The tangent function can also be differentiated by using the definition of a derivative,
but it is easier to use the Quotient Rule together with Formulas 4 and 5:

The derivatives of the remaining trigonometric functions, , , and , can also be
found easily using the Quotient Rule (see Exercises 17–19). We collect all the differentia-
tion formulas for trigonometric functions in the following table. Remember that they are
valid only when is measured in radians.

Derivatives of Trigonometric Functions

d
dx

!tan x" ! sec2x
d
dx

!cot x" ! !csc2x

d
dx

!cos x" ! !sin x
d
dx

!sec x" ! sec x tan x

EXAMPLE 1v

d
dx

!csc x" ! !csc x cot x
d
dx

!sin x" ! cos x

x

cotseccsc

d
dx

!tan x" ! sec2x6

!
1

cos2x
! sec2x

!
cos2x " sin2x

cos2x

!
cos x ! cos x ! sin x !!sin x"

cos2x

!
cos x

d
dx

!sin x" ! sin x
d
dx

!cos x"

cos2x

d
dx

!tan x" !
d
dx # sin x

cos x$

d
dx

!cos x" ! !sin x5

! x 2 cos x " 2x sin x

dy
dx

! x 2 d
dx

!sin x" " sin x
d
dx

!x 2 "

y ! x 2 sin x

Figure 3 shows the graphs of the function of
Example 1 and its deriva tive. Notice that

whenever has a horizontal tangent.yy# ! 0

5

_5

_4 4

yyª

FIGURE 3 

When you memorize this table, it is helpful 
to notice that the minus signs go with the der-
ivatives of the “cofunctions,” that is, cosine,
cosecant, and cotangent.
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SECTION 3.3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS 195

Differentiate . For what values of x does the graph of 
have a horizontal tangent?

SOLUTION The Quotient Rule gives 

In simplifying the answer we have used the identity .
Since is never 0, we see that when , and this occurs when

, where n is an integer (see Figure 4).

Trigonometric functions are often used in modeling real-world phenomena. In particu-
lar, vibrations, waves, elastic motions, and other quantities that vary in a periodic manner
can be described using trigonometric functions. In the following example we discuss an 
instance of simple harmonic motion.

An object at the end of a vertical spring is stretched 4 cm beyond its rest
position and released at time . (See Figure 5 and note that the downward direction is
positive.) Its position at time t is

Find the velocity and acceleration at time t and use them to analyze the motion of the
object.
SOLUTION The velocity and acceleration are

The object oscillates from the lowest point to the highest point
. The period of the oscillation is , the period of .

The speed is , which is greatest when , that is, when
. So the object moves fastest as it passes through its equilibrium position

. Its speed is 0 when , that is, at the high and low points.
The acceleration . It has greatest magnitude at the high

and low points. See the graphs in Figure 6.
a ! !4 cos t ! 0 when s ! 0

!s ! 0" sin t ! 0

EXAMPLE 2 f !x" !
sec x

1 " tan x
f

EXAMPLE 3v

cos t ! 0
# sin t # ! 1# v # ! 4# sin t #

cos t2#!s ! !4 cm"
!s ! 4 cm"

a !
dv
dt

!
d
dt

!!4 sin t" ! !4
d
dt

!sin t" ! !4 cos t

v !
ds
dt

!
d
dt

!4 cos t" ! 4
d
dt

!cos t" ! !4 sin t

s ! f !t" ! 4 cos t

t ! 0

x ! n# " #$4
tan x ! 1f $!x" ! 0sec x

tan2x " 1 ! sec2x

!
sec x !tan x ! 1"

!1 " tan x"2

!
sec x !tan x " tan2x ! sec2x"

!1 " tan x"2

!
!1 " tan x" sec x tan x ! sec x ! sec2x

!1 " tan x"2

f $!x" !
!1 " tan x"

d
dx

!sec x" ! sec x
d
dx

!1 " tan x"

!1 " tan x"2

3

_3

_3 5

FIGURE 4
The horizontal tangents in Example 2

s

0

4

FIGURE 5

FIGURE 6

2

_2

√
s a

π 2π t0

97909_03_ch03_p192-201.qk:97909_03_ch03_p192-201  9/21/10  9:57 AM  Page 195

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).  
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



196 CHAPTER 3 DIFFERENTIATION RULES

Find the 27th derivative of .

SOLUTION The first few derivatives of are as follows:

We see that the successive derivatives occur in a cycle of length 4 and, in particular,
whenever is a multiple of 4. Therefore

and, differentiating three more times, we have

Our main use for the limit in Equation 2 has been to prove the differentiation formula
for the sine function. But this limit is also useful in finding certain other trigonometric lim-
its, as the following two examples show.

Find .

SOLUTION In order to apply Equation 2, we first rewrite the function by multiplying and
dividing by 7:

If we let , then as , so by Equation 2 we have

Calculate .

SOLUTION Here we divide numerator and denominator by x :

(by the continuity of cosine and Equation 2)

EXAMPLE 6v

EXAMPLE 5

! 1

!
cos 0

1

! lim
xl 0

cos x
sin x
x

!
lim
xl 0

cos x

lim
xl 0

sin x
x

lim
xl 0

x cot x ! lim
xl 0

x cos x
sin x

lim
xl 0

x cot x

!
7
4

lim
! l 0

sin !

!
!

7
4

! 1 !
7
4

lim
xl 0

sin 7x
4x

!
7
4

lim
xl 0
! sin 7x

7x "
x l 0! l 0! ! 7x

sin 7x
4x

!
7
4 ! sin 7x

7x "

lim
xl 0

sin 7x
4x

EXAMPLE 4

f "# x$ ! # cos x

f $# x$ ! # sin x

f # x$ ! cos x

cos x

f #27$ # x$ ! sin x

f #24$ # x$ ! cos x

nf #n$ # x$ ! cos x

f #5$ # x$ ! # sin x

f #4$ # x$ ! cos x

f % # x$ ! sin x

Look for a pattern.PS

Note that .sin 7x " 7 sin x

97909_03_ch03_p192-201.qk:97909_03_ch03_p192-201  9/21/10  11:51 AM  Page 196

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).  
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 3.3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS 197

1–16 Differentiate.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. Prove that .

18. Prove that .

19. Prove that .

20 Prove, using the definition of derivative, that if ,
then .

21–24 Find an equation of the tangent line to the curve at the
given point.

21. 22.

23. ,  24. ,  

25. (a) Find an equation of the tangent line to the curve
at the point .

; (b) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

26. (a) Find an equation of the tangent line to the curve
at the point .

; (b) Illustrate part (a) by graphing the curve and the tangent
line on the same screen.

27. (a) If , find .
; (b) Check to see that your answer to part (a) is reasonable by

graphing both and for .

28. (a) If , find and .
; (b) Check to see that your answers to part (a) are reasonable

by graphing , , and .f !f "f

f !!x"f "!x"f !x" ! e x cos x
# x # # $$2f "f

f "!x"f !x" ! sec x % x

!$$3, $ & 3"y ! 3x & 6 cos x

!$$2, $"y ! 2x sin x

!$, % 1" !$, $"y ! x & tan xy ! cos x % sin x

!0, 1"y ! e x cos x,!$$3, 2"y ! sec x,

f "!x" ! % sin x
f !x" ! cos x

d
dx

!cot x" ! % csc2x

d
dx

!sec x" ! sec x tan x

d
dx

!csc x" ! % csc x cot x

y ! x 2 sin x tan xf !x" ! xe x csc x

y !
1 % sec x

tan x
y !

t sin t
1 & t

y !
cos x

1 % sin x
f !'" !

sec '

1 & sec'

y ! sin ' cos 'y !
x

2 % tan x

f !t" !
cot t
e t

y ! c cos t & t 2 sin t

t!'" ! e'!tan' % '"y ! sec ' tan '

y ! 2 sec x % csc xf !x" ! sin x & 1
2 cot x

f !x" ! sx sin xf !x" ! 3x 2 % 2 cos x

29. If , find .

30. If , find .

31. (a) Use the Quotient Rule to differentiate the function

(b) Simplify the expression for by writing it in terms 
of and , and then find .

(c) Show that your answers to parts (a) and (b) are
equivalent.

32. Suppose and , and let
and . Find 

(a) (b) 

33–34 For what values of does the graph of have a horizontal
tangent?

33. 34.

35. A mass on a spring vibrates horizontally on a smooth 
level surface (see the figure). Its equation of motion is

, where is in seconds and in centimeters.
(a) Find the velocity and acceleration at time .
(b) Find the position, velocity, and acceleration of the mass 

at time . In what direction is it moving at that
time?

; 36. An elastic band is hung on a hook and a mass is hung on the
lower end of the band. When the mass is pulled downward
and then released, it vibrates vertically. The equation of
motion is , , where is measured 
in centi meters and in seconds. (Take the positive direction
to be downward.)
(a) Find the velocity and acceleration at time .
(b) Graph the velocity and acceleration functions.
(c) When does the mass pass through the equilibrium

position for the first time?
(d) How far from its equilibrium position does the mass

travel?
(e) When is the speed the greatest?

37. A ladder 10 ft long rests against a vertical wall. Let be the
angle between the top of the ladder and the wall and let be
the distance from the bottom of the ladder to the wall. If the
bottom of the ladder slides away from the wall, how fast does

change with respect to when ?x ' ' ! $$3

x
'

t

t
st ( 0s ! 2 cos t & 3 sin t

x x0

equilibrium
position

t ! 2$$3

t
xtx!t" ! 8 sin t

f !x" ! e x cos xf !x" ! x & 2 sin x

fx

h"!$$3"t"!$$3"
h!x" ! !cos x"$f !x"t!x" ! f !x" sin x

f "!$$3" ! % 2f !$$3" ! 4

f "!x"cos xsin x
f !x"

f !x" !
tan x % 1

sec x

f !!$$6"f !t" ! csc t

H"!'" and H !!'"H!'" ! ' sin '

3.3 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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198 CHAPTER 3 DIFFERENTIATION RULES

38. An object with weight is dragged along a horizontal plane
by a force acting along a rope attached to the object. If the
rope makes an angle with the plane, then the magnitude of
the force is

where is a constant called the coefficient of friction.
(a) Find the rate of change of with respect to .
(b) When is this rate of change equal to 0?

; (c) If lb and , draw the graph of as a func-
tion of and use it to locate the value of for which

. Is the value consistent with your answer to 
part (b)?

39–48 Find the limit.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49–50 Find the given derivative by finding the first few deriva-
tives and observing the pattern that occurs.

49. 50.

51. Find constants such that the function
satisfies the differential equation

.

52. (a) Evaluate .

(b) Evaluate .

; (c) Illustrate parts (a) and (b) by graphing .y ! x sin!1"x#

lim
x l 0

x sin
1
x

W

lim
x l !

x sin
1
x

y " # y$ % 2y ! sin x
y ! A sin x # B cos x

A and B

d 35

dx 35 !x sin x#
d 99

dx99 !sin x#

lim
x l 1

sin!x % 1#
x 2 # x % 2

lim
x l &"4

1 % tan x
sin x % cos x

lim
x l 0

sin!x 2#
x

lim
' l 0

sin '

' # tan '

lim
x l 0

sin 3x sin 5x
x 2lim

x l 0

sin 3x
5x 3 % 4x

lim
' l 0

cos ' % 1
sin '

lim
t l 0

tan 6t
sin 2t

lim
x l 0

sin 4x
sin 6x

lim
x l 0

sin 3x
x

dF"d' ! 0
''

F( ! 0.6W ! 50

'F
(

F !
(W

( sin ' # cos '

'

53. Differentiate each trigonometric identity to obtain a new 
(or familiar) identity.

(a) (b)

(c)

54. A semicircle with diameter sits on an isosceles triangle
to form a region shaped like a two-dimensional ice-

cream cone, as shown in the figure. If is the area of the
semicircle and is the area of the triangle, find

55. The figure shows a circular arc of length and a chord of
length , both subtended by a central angle . Find

; 56. Let .

(a) Graph . What type of discontinuity does it appear to 
have at 0?

(b) Calculate the left and right limits of at 0. Do these 
values confirm your answer to part (a)?

sec x !
1

cos x
tan x !

sin x
cos x

f

f

f !x# !
x

s1 % cos 2x

d

¨

s

lim
'l 0#

s
d

'd
s

P Q

R

B(¨)

A(¨)

¨

10 cm 10 cm

lim
'l 0#

A!'#
B!'#

B!'#
A!'#

PQR
PQ

sin x # cos x !
1 # cot x

csc x

Suppose you are asked to differentiate the function 

The differentiation formulas you learned in the previous sections of this chapter do not 
enable you to calculate .F$!x#

F!x# ! sx 2 # 1

3.4 The Chain Rule
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Observe that is a composite function. In fact, if we let and let
, then we can write , that is, . We know

how to differentiate both and , so it would be useful to have a rule that tells us how to
find the derivative of in terms of the derivatives of and .

It turns out that the derivative of the composite function is the product of the 
derivatives of and . This fact is one of the most important of the differentiation rules and
is called the Chain Rule. It seems plausible if we interpret derivatives as rates of change. 
Regard as the rate of change of with respect to , as the rate of change of
with respect to , and as the rate of change of with respect to . If changes twice
as fast as and changes three times as fast as , then it seems reasonable that changes
six times as fast as , and so we expect that 

The Chain Rule If t is differentiable at and is differentiable at , then the
composite function defined by is differentiable at and

is given by the product 

In Leibniz notation, if and are both differentiable functions, then

COMMENTS ON THE PROOF OF THE CHAIN RULE Let be the change in corresponding to
a change of in , that is,

Then the corresponding change in is 

It is tempting to write

y ! f !u" ! suF

!
dy
du

du
dx

! lim
!u l 0

!y
!u

! lim
!x l 0

!u
!x

! lim
!x l 0

!y
!u

! lim
!x l 0

!u
!x

! lim
!x l 0

!y
!u

!
!u
!x

1

dy
dx

! lim
!xl 0

!y
!x

!y ! f !u " !u" # f !u"

y

!u ! t!x " !x" # t!x"

x!x
u!u

dy
dx

!
dy
du

du
dx

u ! t!x"y ! f !u"

F$!x" ! f $!t!x"" ! t$!x"

F$
xF!x" ! f !t!x""F ! f ! t

t!x"fx

dy
dx

!
dy
du

du
dx

x
yuyx

uxydy#dxu
ydy#duxudu#dx

tf
f ! t

tfF ! f ! t
tf

F ! f ! ty ! F!x" ! f !t!x""u ! t!x" ! x 2 " 1

SECTION 3.4 THE CHAIN RULE 199

(Note that as 
since is continuous.)t

!x l 0!u l 0

James Gregory

The first person to formulate the Chain Rule
was the Scottish mathematician James Gregory
(1638–1675), who also designed the first practi-
cal reflecting telescope. Gregory discovered the
basic ideas of calculus at about the same time
as Newton. He became the first Professor of
Mathematics at the University of St. Andrews
and later held the same position at the Univer-
sity of Edinburgh. But one year after accepting
that position he died at the age of 36.

See Section 1.3 for a review of 
composite functions.
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The only flaw in this reasoning is that in it might happen that (even when
) and, of course, we can’t divide by 0. Nonetheless, this reasoning does at least

suggest that the Chain Rule is true. A full proof of the Chain Rule is given at the end of
this section.

The Chain Rule can be written either in the prime notation

or, if and , in Leibniz notation:

Equation 3 is easy to remember because if and were quotients, then we could
cancel . Remember, however, that has not been defined and should not be
thought of as an actual quotient.

Find if .

SOLUTION 1 (using Equation 2): At the beginning of this section we expressed as
where and . Since

and    

we have

SOLUTION 2 (using Equation 3): If we let and , then

When using Formula 3 we should bear in mind that refers to the derivative of 
when is considered as a function of (called the derivative of with respect to ),

whereas refers to the derivative of when considered as a function of (the deriva-
tive of with respect to ). For instance, in Example 1, can be considered as a function
of and also as a function of . Note that

whereas    

NOTE In using the Chain Rule we work from the outside to the inside. Formula 2 says
that we differentiate the outer function [at the inner function ] and then we multiply
by the derivative of the inner function.

1

outer
function

evaluated
at inner
function

derivative
of outer
function

evaluated
at inner
function

derivative
of inner
function

!x ! 0
!u " 0

EXAMPLE 1

d
dx

f !t!x"" " f " !t!x"" ! t"!x"

t!x"f

dy
du

" f "!u" "
1

2su
dy
dx

" F"!x" "
x

sx 2 # 1

(y " su )u(y " sx 2 # 1)x
yuy

uydy#du
xyxyy

dy#dx

"
1

2sx 2 # 1
!2x" "

x
sx 2 # 1

F"!x" "
dy
du

du
dx

"
1

2su
!2x"

y " suu " x 2 # 1

"
1

2sx 2 # 1
! 2x "

x
sx 2 # 1

F"!x" " f "!t!x"" ! t"!x"

t"!x" " 2xf "!u" " 1
2 u$ 1#2 "

1
2su

t!x" " x 2 # 1f !u" " suF!x" " ! f ! t"!x" " f !t!x""
F

F!x" " sx 2 # 1F"!x"

du#dxdudu
du#dxdy#du

dy
dx

"
dy
du

du
dx

3

u " t!x"y " f !u"

! f ! t""!x" " f "!t!x"" ! t"!x"2

200 CHAPTER 3 DIFFERENTIATION RULES
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Differentiate (a) and (b) .

SOLUTION
(a) If , then the outer function is the sine function and the inner function is
the squaring function, so the Chain Rule gives

(b) Note that . Here the outer function is the squaring function and the
inner function is the sine function. So

The answer can be left as or written as (by a trigonometric identity
known as the double-angle formula).

In Example 2(a) we combined the Chain Rule with the rule for differentiating the sine
function. In general, if , where is a differentiable function of , then, by the Chain
Rule,

Thus

In a similar fashion, all of the formulas for differentiating trigonometric functions can be
combined with the Chain Rule.

Let’s make explicit the special case of the Chain Rule where the outer function is a
power function. If , then we can write where . By using
the Chain Rule and then the Power Rule, we get

The Power Rule Combined with the Chain Rule If is any real number and
is differentiable, then

Alternatively,

Notice that the derivative in Example 1 could be calculated by taking in Rule 4.

derivative
of outer
function

evaluated
at inner
function

derivative
of inner
function

inner
function

outer
function

evaluated
at inner
function

derivative
of outer
function

evaluated
at inner
function

derivative
of inner
function

dy
dx

!
d
dx

!sin x"2 ! 2 ! !sin x" ! cos x

n ! 1
2

d
dx

#t!x"$n ! n#t!x"$n!1 ! t"!x"

d
dx

!un " ! nun!1 du
dx

u ! t!x"
n4

dy
dx

!
dy
du

du
dx

! nun!1 du
dx

! n#t!x"$n!1t"!x"

u ! t!x"y ! f !u" ! uny ! #t!x"$n
f

d
dx

!sin u" ! cos u
du
dx

dy
dx

!
dy
du

du
dx

! cos u
du
dx

xuy ! sin u

sin 2x2 sin x cos x

sin2x ! !sin x"2

EXAMPLE 2v

y ! sin!x 2 "

y ! sin2xy ! sin!x 2 "

! 2x cos!x 2 "

dy
dx

!
d
dx

sin !x 2 " ! cos !x 2 " ! 2x

SECTION 3.4 THE CHAIN RULE 201

See Reference Page 2 or Appendix D.
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202 CHAPTER 3 DIFFERENTIATION RULES

Differentiate .

SOLUTION Taking and in , we have

Find if .

SOLUTION First rewrite :

Thus

Find the derivative of the function 

SOLUTION Combining the Power Rule, Chain Rule, and Quotient Rule, we get 

Differentiate .

SOLUTION In this example we must use the Product Rule before using the Chain Rule:

Noticing that each term has the common factor , we could 
factor it out and write the answer as

Differentiate .

4

EXAMPLE 7

EXAMPLE 6

EXAMPLE 5

EXAMPLE 4v

EXAMPLE 3

y ! e sin x

dy
dx

! 2!2x ! 1"4!x 3 " x ! 1"3!17x 3 ! 6x 2 " 9x ! 3"

2!2x ! 1"4!x 3 " x ! 1"3

! 4!2x ! 1"5!x 3 " x ! 1"3!3x 2 " 1" ! 5!x 3 " x ! 1"4!2x ! 1"4 ! 2

! !x 3 " x ! 1"4 ! 5!2x ! 1"4 d
dx

!2x ! 1"

! !2x ! 1"5 ! 4!x 3 " x ! 1"3 d
dx

!x 3 " x ! 1"

dy
dx

! !2x ! 1"5 d
dx

!x 3 " x ! 1"4 ! !x 3 " x ! 1"4 d
dx

!2x ! 1"5

y ! !2x ! 1"5!x 3 " x ! 1"4

! 9# t " 2
2t ! 1$8 !2t ! 1" ! 1 " 2!t " 2"

!2t ! 1"2 !
45!t " 2"8

!2t ! 1"10

t#!t" ! 9# t " 2
2t ! 1$8 d

dt # t " 2
2t ! 1$

t!t" ! # t " 2
2t ! 1$9

! "1
3 !x 2 ! x ! 1""4%3!2x ! 1"

f #!x" ! "1
3 !x 2 ! x ! 1""4%3 d

dx
!x 2 ! x ! 1"

f !x" ! !x 2 ! x ! 1""1%3f

f !x" !
1

s3 x 2 ! x ! 1
f #!x"

! 100!x 3 " 1"99 ! 3x 2 ! 300x 2!x 3 " 1"99

dy
dx

!
d
dx

!x 3 " 1"100 ! 100!x 3 " 1"99 d
dx

!x 3 " 1"

n ! 100u ! t!x" ! x 3 " 1

y ! !x 3 " 1"100

The graphs of the functions and in 
Example 6 are shown in Figure 1. Notice that

is large when increases rapidly and
when has a horizontal tangent. So

our answer appears to be reasonable.
yy# ! 0
yy#

y#y

10

_10

_2 1

y

yª

FIGURE 1
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SOLUTION Here the inner function is and the outer function is the exponen-
tial function . So, by the Chain Rule,

We can use the Chain Rule to differentiate an exponential function with any base .
Recall from Section 1.6 that . So

and the Chain Rule gives

because is a constant. So we have the formula

In particular, if , we get

In Section 3.1 we gave the estimate

This is consistent with the exact formula because .
The reason for the name “Chain Rule” becomes clear when we make a longer chain by

adding another link. Suppose that , , and , where , , and are
differentiable functions. Then, to compute the derivative of with respect to , we use the
Chain Rule twice:

If , then

Notice that we used the Chain Rule twice.

6

EXAMPLE 8v

! !cos!cos!tan x"" sin!tan x" sec2x

! cos!cos!tan x""#!sin!tan x"$
d
dx

!tan x"

f "!x" ! cos!cos!tan x""
d
dx

cos!tan x"

f !x" ! sin!cos!tan x""

dy
dt

!
dy
dx

dx
dt

!
dy
du

du
dx

dx
dt

ty
htfx ! h!t"u ! t!x"y ! f !u"

ln 2 % 0.693147

d
dx

!2x " % !0.69"2x

d
dx

!2x " ! 2x ln 26

a ! 2

d
dx

!ax " ! ax ln a5

ln a

! e !ln a"x # ln a ! ax ln a

d
dx

!ax " !
d
dx

!e !ln a"x " ! e !ln a"x d
dx

!ln a"x

t!x" ! sin x

ax ! !e ln a "x ! e !ln a"x

a ! e ln a
a $ 0

dy
dx

!
d
dx

!e sin x " ! e sin x d
dx

!sin x" ! e sin x cos x

f !x" ! ex

SECTION 3.4 THE CHAIN RULE 203

More generally, the Chain Rule gives
d
dx

!eu" ! eu
du
dx

Don’t confuse Formula 5 (where is the 
exponent ) with the Power Rule (where is 
the base ):

d
dx

!x n " ! nx n!1

x
x
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204 CHAPTER 3 DIFFERENTIATION RULES

Differentiate .

SOLUTION The outer function is the exponential function, the middle function is the 
secant function, and the inner function is the tripling function. So we have

How to Prove the Chain Rule
Recall that if and x changes from a to , we define the increment of y as

According to the definition of a derivative, we have

So if we denote by the difference between the difference quotient and the derivative, 
we obtain

But

If we define to be 0 when , then becomes a continuous function of . Thus, for
a differentiable function f, we can write

and is a continuous function of . This property of differentiable functions is what 
enables us to prove the Chain Rule.

PROOF OF THE CHAIN RULE Suppose is differentiable at a and is differ-
entiable at . If is an increment in x and and are the corresponding
increments in u and y, then we can use Equation 7 to write

where as . Similarly

where as . If we now substitute the expression for from Equation 8
into Equation 9, we get

!y ! ! f ""b# # $2 $ !t""a# # $1$ !x

$2 l 0 !u l 0 !u

9 !y ! f ""b# !u # $2 !u ! ! f ""b# # $2 $ !u

$1 l 0 !x l 0

8 !u ! t""a# !x # $1 !x ! !t""a# # $1$ !x

b ! t"a# !x !u !y
u ! t"x# y ! f "u#

$ !x

7 !y ! f ""a# !x # $ !x where $ l 0 as !x l 0

$ !x ! 0 $ !x

$ !
!y
!x

% f ""a# ? !y ! f ""a# !x # $ !x

lim
!xl 0

$ ! lim
!xl 0

%!y
!x

% f ""a#& ! f ""a# % f ""a# ! 0

$

lim
!xl 0

!y
!x

! f ""a#

!y ! f "a # !x# % f "a#

y ! f "x# a # !x

! 3e sec 3& sec 3& tan 3&

! e sec 3& sec 3& tan 3&
d
d&

"3&#

dy
d&

! e sec 3& d
d&

"sec 3&#

EXAMPLE 9 y ! e sec 3&
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SECTION 3.4 THE CHAIN RULE 205

1–6 Write the composite function in the form . 
[Identify the inner function and the outer function

.] Then find the derivative .

1. 2.

3. 4.

5. 6.

7–46 Find the derivative of the function.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17.

18.

19.

20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32. y ! sec2!m!"y ! sin!tan 2x"

F!t" ! et sin 2t F!v" ! # v
v 3 " 1$6

y !
e u # e# u

e u " e# uy !
r

sr 2 " 1

f !s" ! % s2 " 1
s2 " 4

G!y" !
!y # 1"4

!y2 " 2y"5y ! 5# 1&x

y ! 101# x 2
y ! s1 " 2e3x

y ! # x 2 " 1
x 2 # 1$3

F!t" ! !3t # 1"4!2t " 1"# 3

h!t" ! !t " 1"2&3!2t 2 # 1"3

t!x" ! !x 2 " 1"3!x 2 " 2"6

y ! e# 2 t cos 4t

f !x" ! !2x # 3"4!x 2 " x " 1"5

y ! xe# kx

y ! a3 " cos3xy ! cos!a3 " x 3"

f !t" ! sin!et " " esin tf !z" !
1

z 2 " 1

f !x" !
1

!1 " sec x"2F!x" ! s1 # 2x

F!x" ! !4x # x 2"100F!x" ! !x 4 " 3x 2 # 2"5

y ! s2 # e xy ! esx

y ! sin!cot x"y ! tan $x

y ! !2x 3 " 5"4y ! s3 1 " 4x

dy&dxy ! f !u"
u ! t!x"

f !t!x"" 33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47–50 Find and .

47. 48.

49. 50.

51–54 Find an equation of the tangent line to the curve at the given
point.

51. ,  52. ,  

53. ,  54. ,  

55. (a) Find an equation of the tangent line to the curve
at the point .

; (b) Illustrate part (a) by graphing the curve and the tangent line
on the same screen.

56. (a) The curve is called a bullet-nose curve.
Find an equation of the tangent line to this curve at the
point .

; (b) Illustrate part (a) by graphing the curve and the tangent line
on the same screen.

57. (a) If , find .
; (b) Check to see that your answer to part (a) is reasonable by

comparing the graphs of and .f %f

f %!x"f !x" ! xs2 # x 2

!1, 1"

y ! ' x '&s2 # x 2

!0, 1"y ! 2&!1 " e# x "

!0, 0"y ! sin x " sin2x!$, 0"y ! sin!sin x"

!2, 3"y ! s1 " x 3!0, 1"y ! !1 " 2x"10

y ! e e xy ! e &x sin 'x

y ! cos2xy ! cos!x 2"

y (y%

y ! (x " !x " sin2x"3) 4y ! cosssin!tan $x"

y ! 23x2

t!x" ! !2ra rx " n"p

y ! sx " sx " sxf !t" ! sin2!esin2 t "

y ! sin!sin!sin x""f !t" ! tan!e t " " e tan t

y ! ek tan sxy ! cot2!sin !"

y ! s1 " xe# 2xy ! cos#1 # e2x

1 " e2x$
y ! x 2e# 1&xy ! 2sin $x

3.4 Exercises

so

As , Equation 8 shows that . So both and as 
Therefore

This proves the Chain Rule.

! f %!b" t%!a" ! f %!t!a"" t%!a"

dy
dx

! lim
)x l 0

)y
)x

! lim
)x l 0

( f %!b" " *2 ) (t%!a" " *1)

)x l 0.*2 l 0*1 l 0)u l 0)x l 0

)y
)x

! ( f %!b" " *2 ) (t%!a" " *1)

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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206 CHAPTER 3 DIFFERENTIATION RULES

; 58. The function , , arises in
applications to frequency modulation (FM) synthesis.
(a) Use a graph of produced by a graphing device to make

a rough sketch of the graph of .
(b) Calculate and use this expression, with a graphing

device, to graph . Compare with your sketch in part (a).

59. Find all points on the graph of the function
at which the tangent line is horizontal.

60. Find the -coordinates of all points on the curve
at which the tangent line is horizontal.

61. If , where , , ,
, and , find .

62. If , where and , 
find .

63. A table of values for , , , and is given.

(a) If , find .
(b) If , find .

64. Let and be the functions in Exercise 63.
(a) If , find .
(b) If , find .

65. If and are the functions whose graphs are shown, let
, , and . Find

each derivative, if it exists. If it does not exist, explain why.
(a) (b) (c)

66. If is the function whose graph is shown, let
and . Use the graph of to estimate the value 
of each derivative.
(a) (b)

f !x" ! 2 sin x ! sin2x

x
y ! sin 2x " 2 sin x

F!x" ! f !t!x"" f !"2" ! 8 f #!"2" ! 4 f #!5" ! 3
t!5" ! "2 t#!5" ! 6 F#!5"

h!x" ! s4 ! 3f !x" f !1" ! 7 f #!1" ! 4
h#!1"

f

x

y

0 1

y=ƒ

1

h#!2" t#!2"

t!x" ! f !x 2 " f
f h!x" ! f ! f !x""

x

y

0

f

g
1

1

u#!1" v#!1" w#!1"

u!x" ! f !t!x"" v!x" ! t! f !x"" w!x" ! t!t!x""
f t

G!x" ! t!t!x"" G#!3"
F!x" ! f ! f !x"" F#!2"

f t
H!x" ! t! f !x"" H#!1"
h!x" ! f !t!x"" h#!1"

t f # t#

f #
f #!x"

f #
f

0 $ x $ %f !x" ! sin!x ! sin 2x" 67. If , where the graph of is shown, evaluate .

68. Suppose is differentiable on and is a real number. 
Let and . Find expressions 
for (a) and (b) .

69. Suppose is differentiable on . Let and
. Find expressions for (a) and (b) .

70. Let and , where ,
, and .

(a) Find and in terms of .
(b) In terms of , find an equation of the tangent line to the

graph of at the point where .

71. Let , where , , ,
, and . Find .

72. If is a twice differentiable function and , find
in terms of , , and .

73. If , where and , 
find .

74. If , where , , ,
, and , find .

75. Show that the function satisfies
the differential equation .

76. For what values of does the function satisfy the 
differential equation ?

77. Find the 50th derivative of .

78. Find the 1000th derivative of .

79. The displacement of a particle on a vibrating string is given by
the equation where is measured in
centimeters and in seconds. Find the velocity of the particle
after seconds.

80. If the equation of motion of a particle is given by
, the particle is said to undergo simple 

harmonic motion.
(a) Find the velocity of the particle at time .
(b) When is the velocity 0?

81. A Cepheid variable star is a star whose brightness alternately
increases and decreases. The most easily visible such star is
Delta Cephei, for which the interval between times of maxi -
mum brightness is 5.4 days. The average brightness of this star
is 4.0 and its brightness changes by . In view of these
data, the brightness of Delta Cephei at time , where is mea-t t

& 0.35

t

s ! A cos!'t ! ("

t
t

s!t" ! 10 ! 1
4 sin!10% t" s

f !x" ! xe"x

y ! cos 2x

y) " 4y# ! y ! 0
r y ! erx

y) " 4y# ! 13y ! 0
y ! e 2x!A cos 3x ! B sin 3x"

f #!2" ! 5 f #!3" ! 6 F#!1"
F!x" ! f !x f !x f !x""" f !1" ! 2 f !2" ! 3 f #!1" ! 4

F#!0"
F!x" ! f !3f !4 f !x""" f !0" ! 0 f #!0" ! 2

f ) t t# t )
t f !x" ! xt!x 2 "

t#!2" ! 5 f #!3" ! 6 r#!1"
r!x" ! f !t!h!x""" h!1" ! 2 t!2" ! 3 h#!1" ! 4

h x ! 0
k

t#!0" t)!0" c
f #!0" ! 5 f )!0" ! "2

t!x" ! e cx ! f !x" h!x" ! ekx f !x" f !0" ! 3

G!x" ! e f !x" F#!x" G#!x"
f ! F!x" ! f !e x "

F#!x" G#!x"
F!x" ! f !x * " G!x" ! # f !x"$*

f ! *

x

y

0

1

1

f

t!x" ! sf !x" f t#!3"

x

1 3 2 4 6
2 1 8 5 7
3 7 2 7 9

t#!x"f #!x"t!x"f !x"
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SECTION 3.4 THE CHAIN RULE 207

sured in days, has been modeled by the function

(a) Find the rate of change of the brightness after days.
(b) Find, correct to two decimal places, the rate of increase

after one day.

82. In Example 4 in Section 1.3 we arrived at a model for the
length of daylight (in hours) in Philadelphia on the th day of
the year:

Use this model to compare how the number of hours of day-
 light is increasing in Philadelphia on March 21 and May 21.

; 83. The motion of a spring that is subject to a frictional force or 
a damping force (such as a shock absorber in a car) is often
modeled by the product of an exponential function and a sine
or cosine function. Suppose the equation of motion of a point
on such a spring is

where is measured in centimeters and in seconds. Find 
the velocity after seconds and graph both the position and
velocity functions for .

84. Under certain circumstances a rumor spreads according to 
the equation

where is the proportion of the population that knows 
the rumor at time and and are positive constants. [In
Sec tion 9.4 we will see that this is a reasonable equation 
for .]
(a) Find .
(b) Find the rate of spread of the rumor.

; (c) Graph for the case , with measured in
hours. Use the graph to estimate how long it will take for
80% of the population to hear the rumor.

85. A particle moves along a straight line with displacement
velocity , and acceleration . Show that

Explain the difference between the meanings of the deriv-
atives .

86. Air is being pumped into a spherical weather balloon. At any
time , the volume of the balloon is and its radius is .
(a) What do the derivatives and represent?
(b) Express in terms of .

; 87. The flash unit on a camera operates by storing charge on a
capacitor and releasing it suddenly when the flash is set off.

dV!dt dr!dt
dV!dr dV!dt

t V"t# r"t#

dv!dt and dv!ds

a"t# ! v"t#
dv
ds

v"t# a"t#
s"t#,

p a ! 10 k ! 0.5 t

lim tl ! p"t#
p"t#

t a k
p"t#

p"t# !
1

1 " ae# k t

0 $ t $ 2
t

s t

s"t# ! 2e# 1.5 t sin 2%t

L"t# ! 12 " 2.8 sin$ 2%

365
"t # 80#%

t

t

B"t# ! 4.0 " 0.35 sin&2% t
5.4 '

The following data describe the charge remaining on the
capacitor (measured in microcoulombs, &C) at time (mea-
sured in seconds).

(a) Use a graphing calculator or computer to find an expo-
nential model for the charge.

(b) The derivative represents the electric current (mea-
sured in microamperes, &A) flowing from the capacitor to
the flash bulb. Use part (a) to estimate the current when

s. Compare with the result of Example 2 in 
Section 2.1.

; 88. The table gives the US population from 1790 to 1860.

(a) Use a graphing calculator or computer to fit an exponen-
tial function to the data. Graph the data points and the
exponential model. How good is the fit?

(b) Estimate the rates of population growth in 1800 and 1850
by averaging slopes of secant lines.

(c) Use the exponential model in part (a) to estimate the rates
of growth in 1800 and 1850. Compare these estimates
with the ones in part (b).

(d) Use the exponential model to predict the population in
1870. Compare with the actual population of 38,558,000.
Can you explain the discrepancy?

89. Computer algebra systems have commands that differentiate
functions, but the form of the answer may not be convenient
and so further commands may be necessary to simplify the
answer.
(a) Use a CAS to find the derivative in Example 5 and com-

pare with the answer in that example. Then use the sim-
plify command and compare again.

(b) Use a CAS to find the derivative in Example 6. What
happens if you use the simplify command? What hap pens
if you use the factor command? Which form of the
answer would be best for locating horizontal tangents?

90. (a) Use a CAS to differentiate the function

and to simplify the result.
(b) Where does the graph of have horizontal tangents?
(c) Graph and on the same screen. Are the graphs con-

sistent with your answer to part (b)?

Q

f f '
f

t

f "x# ! ( x 4 # x " 1
x 4 " x " 1

CAS

CAS

t ! 0.04

Q'"t#

t 0.00 0.02 0.04 0.06 0.08 0.10

Q 100.00 81.87 67.03 54.88 44.93 36.76

Year Population Year Population

1790 3,929,000 1830 12,861,000
1800 5,308,000 1840 17,063,000
1810 7,240,000 1850 23,192,000
1820 9,639,000 1860 31,443,000
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208 CHAPTER 3 DIFFERENTIATION RULES

91. Use the Chain Rule to prove the following.
(a) The derivative of an even function is an odd function.
(b) The derivative of an odd function is an even function.

92. Use the Chain Rule and the Product Rule to give an 
alternative proof of the Quotient Rule.
[Hint: Write .]

93. (a) If is a positive integer, prove that

(b) Find a formula for the derivative of 
that is similar to the one in part (a).

94. Suppose is a curve that always lies above the -axis
and never has a horizontal tangent, where is dif ferentiable
everywhere. For what value of is the rate of change of
with respect to eighty times the rate of change of with
respect to ?

95. Use the Chain Rule to show that if is measured in degrees,
then

d
d!

!sin !" !
"

180
cos !

!

x
x y

y y 5
f

y ! f !x" x

y ! cosnx cos nx

d
dx

!sinnx cos nx" ! n sinn# 1x cos!n $ 1"x

n

f !x"#t!x" ! f !x"$t!x"%# 1

(This gives one reason for the convention that radian measure
is always used when dealing with trigonometric functions in
calculus: The differentiation formulas would not be as simple if
we used degree measure.)

96. (a) Write and use the Chain Rule to show that

(b) If , find and sketch the graphs of 
and . Where is not differentiable?

(c) If , find and sketch the graphs of 
and . Where is not differentiable?

97. If and , where and are twice differen -
tiable functions, show that

98. If and , where and possess third deriva-
tives, find a formula for similar to the one given in
Exercise 97.

d 3y#dx 3
tfu ! t!x"y ! f !u"

d 2y
dx 2 !

d 2y
du 2 & dudx'2

$
dy
du

d 2u
dx 2

tfu ! t!x"y ! f !u"

tt%
tt%!x"t!x" ! sin ( x (

ff %
ff %!x"f !x" ! ( sin x (

d
dx ( x ( !

x

( x (

( x ( ! sx 2

A P P L I E D  P R O J E C T WHERE SHOULD A PILOT START DESCENT?

An approach path for an aircraft landing is shown in the figure and satisfies the following 
conditions:

(i) The cruising altitude is when descent starts at a horizontal distance from touch-
down at the origin.

(ii) The pilot must maintain a constant horizontal speed throughout descent.

(iii) The absolute value of the vertical acceleration should not exceed a constant (which
is much less than the acceleration due to gravity). 

1. Find a cubic polynomial that satisfies condition (i) by
imposing suitable conditions on and at the start of descent and at touchdown.

2. Use conditions (ii) and (iii) to show that  

3. Suppose that an airline decides not to allow vertical acceleration of a plane to exceed 
mi#h . If the cruising altitude of a plane is 35,000 ft and the speed is 300 mi#h,

how far away from the airport should the pilot start descent?

; 4. Graph the approach path if the conditions stated in Problem 3 are satisfied.

2k ! 860

6hv 2

! 2 & k

P%!x"P!x"
P!x" ! ax 3 $ bx 2 $ cx $ d

k

v

!h

; Graphing calculator or computer required

y

x0

y=P(x)

!

h
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SECTION 3.5 IMPLICIT DIFFERENTIATION 209

The functions that we have met so far can be described by expressing one variable explic-
itly in terms of another variable—for example,

or    

or, in general, . Some functions, however, are defined implicitly by a relation
between and such as

or

In some cases it is possible to solve such an equation for as an explicit function (or sev-
eral functions) of . For instance, if we solve Equation 1 for , we get , 
so two of the functions determined by the implicit Equation l are and

. The graphs of and are the upper and lower semicircles of the 
cir cle . (See Figure 1.)

It’s not easy to solve Equation 2 for explicitly as a function of by hand. (A com-
puter algebra system has no trouble, but the expressions it obtains are very complicated.)
Nonetheless, is the equation of a curve called the folium of Descartes shown in 
Figure 2 and it implicitly defines as several functions of . The graphs of three such func-
tions are shown in Figure 3. When we say that is a function defined implicitly by Equa-
 tion 2, we mean that the equation

is true for all values of in the domain of .

2

x

y

0

˛+Á=6xy

FIGURE 2 The folium of Descartes

x

y

0

FIGURE 3 Graphs of three functions defined by the folium of Descartes

x

y

0x

y

0

fx

x 3 ! ! f "x#$3 ! 6x f "x#

f
xy

xy

FIGURE 1 

0 x

y

0 x

y

0 x

y

(c) ©=_œ„„„„„„25-≈(b) ƒ=œ„„„„„„25-≈(a) ≈+¥=25

x 2 ! y 2 ! 25
tft"x# ! "s25 " x 2

f "x# ! s25 " x 2
y ! #s25 " x 2yx

y

x 3 ! y 3 ! 6xy2

x 2 ! y 2 ! 251

yx
y ! f "x#

y ! x sin xy ! sx 3 ! 1

3.5 Implicit Differentiation
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210 CHAPTER 3 DIFFERENTIATION RULES

Fortunately, we don’t need to solve an equation for in terms of in order to find the
derivative of . Instead we can use the method of implicit differentiation. This consists
of differentiating both sides of the equation with respect to and then solving the result-
ing equation for . In the examples and exercises of this section it is always assumed that
the given equation determines implicitly as a differentiable function of so that the
method of implicit differentiation can be applied.

(a) If , find .

(b) Find an equation of the tangent to the circle at the point .

SOLUTION 1
(a) Differentiate both sides of the equation :

Remembering that is a function of and using the Chain Rule, we have 

Thus

Now we solve this equation for :

(b) At the point we have and , so

An equation of the tangent to the circle at is therefore

SOLUTION 2
(b) Solving the equation , we get . The point lies on
the upper semicircle and so we consider the function .
Differentiating using the Chain Rule, we have

EXAMPLE 1v

! 1
2 !25 ! x 2 "!1#2!!2x" ! !

x
s25 ! x 2

f "!x" ! 1
2 !25 ! x 2 "!1#2 d

dx
!25 ! x 2 "

f
f !x" ! s25 ! x 2y ! s25 ! x 2

!3, 4"y ! # s25 ! x 2x 2 $ y 2 ! 25

3x $ 4y ! 25ory ! 4 ! !3
4 !x ! 3"

!3, 4"

dy
dx

! !
3
4

y ! 4x ! 3!3, 4"

dy
dx

! !
x
y

dy#dx

2x $ 2y
dy
dx

! 0

d
dx

!y 2 " !
d
dy

!y 2 "
dy
dx

! 2y
dy
dx

xy

d
dx

!x 2 " $
d
dx

!y 2 " ! 0

d
dx

!x 2 $ y 2 " !
d
dx

!25"

x 2 $ y 2 ! 25

!3, 4"x 2 $ y 2 ! 25

dy
dx

x 2 $ y 2 ! 25

xy
y"

x
y

xy
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SECTION 3.5 IMPLICIT DIFFERENTIATION 211

So

and, as in Solution 1, an equation of the tangent is .

NOTE 1 The expression in Solution 1 gives the derivative in terms of
both and . It is correct no matter which function is determined by the given equation.
For instance, for we have

whereas for we have

(a) Find if .
(b) Find the tangent to the folium of Descartes at the point .
(c) At what point in the first quadrant is the tangent line horizontal? 

SOLUTION
(a) Differentiating both sides of with respect to , regarding as a func-
tion of , and using the Chain Rule on the term and the Product Rule on the term ,
we get

or

We now solve for :

(b) When ,

and a glance at Figure 4 confirms that this is a reasonable value for the slope at . So
an equation of the tangent to the folium at is

or    

(c) The tangent line is horizontal if . Using the expression for from part (a), 
we see that when (provided that . Substituting
in the equation of the curve, we get

which simplifies to . Since in the first quadrant, we have . If
, then . Thus the tangent is horizontal at ,

which is approximately (2.5198, 3.1748). Looking at Figure 5, we see that our answer 
is reasonable.

!24"3, 25"3#y ! 1
2 !28"3# ! 25"3x ! 161"3 ! 24"3

x 3 ! 16x " 0x 6 ! 16x 3

EXAMPLE 2v

x 3 ! ( 1
2 x 2)3 ! 6x( 1

2 x 2)

y ! 1
2 x 2y 2 " 2x " 0)2y " x 2 ! 0y# ! 0

y#y# ! 0

x ! y ! 6y " 3 ! "1!x " 3#

!3, 3#
!3, 3#

y# !
2 ! 3 " 32

32 " 2 ! 3
! "1

x ! y ! 3

y# !
2y " x 2

y 2 " 2x

!y 2 " 2x#y# ! 2y " x 2

y 2y# " 2xy# ! 2y " x 2y#

x 2 ! y 2y# ! 2xy# ! 2y

3x 2 ! 3y 2y# ! 6xy# ! 6y

6xyy 3x
yxx 3 ! y 3 ! 6xy

!3, 3#x 3 ! y 3 ! 6xy
x 3 ! y 3 ! 6xyy#

dy
dx

! "
x
y

! "
x

"s25 " x 2
!

x
s25 " x 2

y ! t!x# ! "s25 " x 2

dy
dx

! "
x
y

! "
x

s25 " x 2

y ! f !x# ! s25 " x 2
yyx

dy"dx ! "x"y

3x ! 4y ! 25

f #!3# ! "
3

s25 " 32
! "

3
4

Example 1 illustrates that even when it is 
possible to solve an equation explicitly for in
terms of , it may be easier to use implicit 
differentiation.

x
y

FIGURE 4

0

y

x

(3, 3)

4

0 4

FIGURE 5 
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NOTE 2 There is a formula for the three roots of a cubic equation that is like the quad-
ratic formula but much more complicated. If we use this formula (or a computer algebra
system) to solve the equation for in terms of , we get three functions
determined by the equation: 

and

(These are the three functions whose graphs are shown in Figure 3.) You can see that the
method of implicit differentiation saves an enormous amount of work in cases such as this.
Moreover, implicit differentiation works just as easily for equations such as

for which it is impossible to find a similar expression for in terms of .

Find if .

SOLUTION Differentiating implicitly with respect to and remembering that is a func-
tion of , we get

(Note that we have used the Chain Rule on the left side and the Product Rule and Chain
Rule on the right side.) If we collect the terms that involve , we get

So

Figure 6, drawn with the implicit-plotting command of a computer algebra system,
shows part of the curve . As a check on our calculation, notice that

when and it appears from the graph that the slope is approximately
at the origin.

Figures 7, 8, and 9 show three more curves produced by a computer algebra system with
an implicit-plotting command. In Exercises 41–42 you will have an opportunity to create
and examine unusual curves of this nature.

FIGURE 8
(¥-1) sin(xy)=≈-4

6

_6

_6 6

FIGURE 7
(¥-1)(¥-4)=≈(≈-4)

3

_3

_3 3

FIGURE 9
y sin 3x=x cos 3y

9

_9

_9 9

EXAMPLE 3

!1
x ! y ! 0y" ! !1

sin!x # y" ! y 2 cos x

y" !
y 2 sin x # cos!x # y"

2y cos x ! cos!x # y"

cos!x # y" # y 2 sin x ! !2y cos x"y" ! cos!x # y" ! y"

y"

cos!x # y" ! !1 # y"" ! y 2!!sin x" # !cos x"!2yy""

x
yx

sin!x # y" ! y 2 cos xy"

xy

y 5 # 3x 2y 2 # 5x 4 ! 12

y ! 1
2 [!f !x" $ s!3(s3 !1

2 x 3 # s1
4 x 6 ! 8x 3 ! s3 !1

2 x 3 ! s1
4 x 6 ! 8x 3 )]

y ! f !x" ! s3 !1
2 x 3 # s1

4 x 6 ! 8x 3 # s3 !1
2 x 3 ! s1

4 x 6 ! 8x 3

xyx 3 # y 3 ! 6xy

212 CHAPTER 3 DIFFERENTIATION RULES

FIGURE 6

2

_2

_2 2

Abel and Galois

The Norwegian mathematician Niels Abel 
proved in 1824 that no general formula can be
given for the roots of a fifth-degree equation in
terms of radicals. Later the French mathematician
Evariste Galois proved that it is impossible to find
a general formula for the roots of an th-degree
equation (in terms of algebraic operations on the
coefficients) if is any integer larger than 4.n

n
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SECTION 3.5 IMPLICIT DIFFERENTIATION 213

The following example shows how to find the second derivative of a function that is 
defined implicitly.

Find if .

SOLUTION Differentiating the equation implicitly with respect to , we get

Solving for gives

To find we differentiate this expression for using the Quotient Rule and remember-
ing that is a function of :

If we now substitute Equation 3 into this expression, we get

But the values of and must satisfy the original equation . So the answer
simplifies to

Derivatives of Inverse Trigonometric Functions
The inverse trigonometric functions were reviewed in Section 1.6. We discussed their con-
tinuity in Section 2.5 and their asymptotes in Section 2.6. Here we use implicit differentia-
tion to find the derivatives of the inverse trigonometric functions, assuming that these 
functions are differentiable. [In fact, if is any one-to-one differentiable function, it can
be proved that its inverse function is also differentiable, except where its tangents are
vertical. This is plausible because the graph of a differentiable function has no corner or
kink and so if we reflect it about , the graph of its inverse function also has no corner
or kink.]

Recall the definition of the arcsine function:

Differentiating implicitly with respect to x, we obtain

cos y
dy
dx

! 1 or
dy
dx

!
1

cos y

sin y ! x

y ! sin!1x means sin y ! x and !
"

2
# y #

"

2

y ! x

f !1
f

y$ ! !
3x 2!16"
y 7 ! !48

x 2

y 7

x y x 4 % y 4 ! 16

! !
3!x 2y 4 % x 6 "

y 7 ! !
3x 2!y 4 % x 4 "

y 7

y$ ! !

3x 2y 3 ! 3x 3y 2#!
x 3

y 3$
y 6

! !
y 3 ! 3x 2 ! x 3!3y 2y&"

y 6

y$ !
d
dx #!

x 3

y 3$ ! !
y 3 !d%dx"!x 3 " ! x 3 !d%dx"!y 3 "

!y 3 "2

y x
y$ y&

3 y& ! !
x 3

y 3

y&
4x 3 % 4y 3y& ! 0

x

EXAMPLE 4 y$ x 4 % y 4 ! 16

Figure 10 shows the graph of the curve
of Example 4. Notice that it’s 

a stretched and flat tened version of the circle
. For this reason it’s sometimes

called a fat circle. It starts out very steep on the
left but quickly becomes very flat. This can be
seen from the expression

y& ! !
x 3

y 3 ! !# xy$3

x 2 % y 2 ! 4

x 4 % y 4 ! 16

FIGURE 10

x

2

y

20

x$+y$=16
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214 CHAPTER 3 DIFFERENTIATION RULES

Now , since , so

Therefore

The formula for the derivative of the arctangent function is derived in a similar way. If
, then . Differentiating this latter equation implicitly with respect to 

, we have

Differentiate (a) and (b) .

SOLUTION

(a)

(b)

The inverse trigonometric functions that occur most frequently are the ones that we have
just discussed. The derivatives of the remaining four are given in the following table. The
proofs of the formulas are left as exercises.

Derivatives of Inverse Trigonometric Functions

d
dx

!tan!1x" !
1

1 " x 2

d
dx

!cot!1x" ! !
1

1 " x 2

d
dx

!cos!1x" ! !
1

s1 ! x 2

d
dx

!sec!1x" !
1

xsx 2 ! 1

d
dx

!sin!1x" !
1

s1 ! x 2

d
dx

!csc!1x" ! !
1

xsx 2 ! 1

EXAMPLE 5v

!
sx

2!1 " x"
" arctansx

f #!x" ! x
1

1 " (sx )2 ( 1
2 x!1#2) " arctansx

! !
1

!sin!1x"2s1 ! x 2

dy
dx

!
d
dx

!sin!1x"!1 ! !!sin!1x"!2 d
dx

!sin!1x"

f !x" ! x arctansxy !
1

sin!1x

d
dx

!tan!1x" !
1

1 " x 2

dy
dx

!
1

sec2y
!

1
1 " tan2y

!
1

1 " x 2

sec2y
dy
dx

! 1

x
tan y ! xy ! tan!1x

d
dx

!sin!1x" !
1

s1 ! x 2

dy
dx

!
1

cos y
!

1
s1 ! x 2

cos y ! s1 ! sin2y ! s1 ! x 2

!$#2 % y % $#2cos y & 0

The same method can be used to find a formula
for the derivative of any inverse function. See
Exercise 77.

Recall that is an alternative 
notation for .tan!1x

arctan x

Figure 11 shows the graph of 
and its derivative . 
Notice that is increasing and is always
positive. The fact that as

is reflected in the fact that
as .x l '(f #!x" l 0

x l '(
tan!1x l '$#2

f #!x"f
f #!x" ! 1#!1 " x 2 "

f !x" ! tan!1x

1.5

_1.5

_6 6

y=tan–! x
y= 1

1+≈

FIGURE 11

The formulas for the derivatives of and
depend on the definitions that are used

for these functions. See Exercise 64.
sec!1x

csc!1x
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SECTION 3.5 IMPLICIT DIFFERENTIATION 215

1–4
(a) Find by implicit differentiation.
(b) Solve the equation explicitly for and differentiate to get in

terms of .
(c) Check that your solutions to parts (a) and (b) are consistent by

substituting the expression for into your solution for part (a).

1. 2.

3. 4.

5–20 Find by implicit differentiation.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. If and , find .

22. If , find .

23–24 Regard as the independent variable and as the dependent
variable and use implicit differentiation to find .

23. 24.

25–32 Use implicit differentiation to find an equation of the tangent
line to the curve at the given point.

25. ,  

26. ,  

27. ,  (ellipse)

28. ,  (hyperbola)

29. 30.

(cardioid) (astroid)

x

y

0 8x

y

(!3s3, 1)(0, 1
2)

x 2!3 " y 2!3 ! 4x2 " y2 ! "2x2 " 2y2 ! x#2

"1, 2#x2 " 2xy ! y2 " x ! 2

"1, 1#x2 " xy " y2 ! 3

"#, ##sin"x " y# ! 2x ! 2y

"#!2, #!4#y sin 2x ! x cos 2y

y sec x ! x tan yx 4y2 ! x 3y " 2xy3 ! 0

dx!dy
xy

t$"0#t"x# " x sin t"x# ! x 2

f $"1#f "1# ! 2f "x# " x2 $f "x#%3 ! 10

tan"x ! y# !
y

1 " x 2e y cos x ! 1 " sin"xy#

x sin y " y sin x ! 1tan!1"x 2y# ! x " xy 2

sx " y ! 1 " x2y2e x!y ! x ! y

e y sin x ! x " xy4 cos x sin y ! 1

cos"xy# ! 1 " sin yy cos x ! x 2 " y 2

xe y ! x ! yx 4"x " y# ! y 2"3x ! y#

2x 3 " x 2y ! xy3 ! 2x 2 " xy ! y 2 ! 4

2sx " sy ! 3x 3 " y3 ! 1

dy!dx

cos x " sy ! 5
1
x

"
1
y

! 1

2x 2 " x " xy ! 19x 2 ! y 2 ! 1

y

x
y$y

y$
31. 32.

(3, 1) (0, !2)
(lemniscate) (devil’s curve)

33. (a) The curve with equation is called a
kampyle of Eudoxus. Find an equation of the tangent line
to this curve at the point .

; (b) Illustrate part (a) by graphing the curve and the tangent line
on a common screen. (If your graphing device will graph
implicitly defined curves, then use that capability. If not,
you can still graph this curve by graphing its upper and
lower halves separately.)

34. (a) The curve with equation is called the
Tschirnhausen cubic. Find an equation of the tangent line
to this curve at the point .

(b) At what points does this curve have horizontal tangents?
; (c) Illustrate parts (a) and (b) by graphing the curve and the

tangent lines on a common screen.

35–38 Find by implicit differentiation.

35. 36.

37. 38.

39. If , find the value of at the point where .

40. If , find the value of at the point where
.

41. Fanciful shapes can be created by using the implicit plotting
capabilities of computer algebra systems.
(a) Graph the curve with equation

At how many points does this curve have horizontal 
tangents? Estimate the -coordinates of these points.

(b) Find equations of the tangent lines at the points (0, 1) 
and (0, 2).

(c) Find the exact -coordinates of the points in part (a).
(d) Create even more fanciful curves by modifying the

equation in part (a).

x

x

y"y 2 ! 1#"y ! 2# ! x"x ! 1#"x ! 2#

CAS

x ! 1
y%x 2 " xy " y 3 ! 1

x ! 0y &xy " e y ! e

x 4 " y4 ! a4x 3 " y 3 ! 1

sx " sy ! 19x2 " y2 ! 9

y&

"1, !2#

y 2 ! x 3 " 3x 2

"1, 2#

y 2 ! 5x 4 ! x 2

x

y

x

y

0

y2"y2 ! 4# ! x2"x2 ! 5#2"x 2 " y 2 #2 ! 25"x 2 ! y 2 #

3.5 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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216 CHAPTER 3 DIFFERENTIATION RULES

42. (a) The curve with equation

has been likened to a bouncing wagon. Use a computer
algebra system to graph this curve and discover why.

(b) At how many points does this curve have horizontal 
tangent lines? Find the -coordinates of these points.

43. Find the points on the lemniscate in Exercise 31 where the 
tangent is horizontal.

44. Show by implicit differentiation that the tangent to the
ellipse

at the point is

45. Find an equation of the tangent line to the hyperbola

at the point .

46. Show that the sum of the - and -intercepts of any tangent
line to the curve is equal to .

47. Show, using implicit differentiation, that any tangent line at 
a point to a circle with center is perpendicular to the 
radius .

48. The Power Rule can be proved using implicit differentiation 
for the case where is a rational number, , and

is assumed beforehand to be a differentiable
function. If , then . Use implicit differentia-
tion to show that

49–60 Find the derivative of the function. Simplify where 
possible.

49. 50.

51. 52.

53.

54.

55. 56.

57. 58.

59.

60.

2y 3 ! y 2 " y 5 ! x 4 " 2x 3 ! x 2

CAS

y ! arctan!1 " x
1 ! x

y ! arccos"b ! a cos x
a ! b cos x#, 0 # x # $, a % b % 0

y ! cos"1$sin"1 t%y ! x sin"1x ! s1 " x 2

F$&% ! arcsin ssin &h$ t% ! cot"1$ t% ! cot"1$1&t%

y ! tan"1(x " s1 ! x 2 )
G$ x% ! s1 " x 2 arccos x

t$ x% ! sx 2 " 1 sec"1 xy ! sin"1$2x ! 1%

y ! tan"1$ x 2%y ! $ tan"1x%2

y' !
p
q

x $ p&q%"1

y q ! x py ! x p&q
y ! f $ x% ! x n

n ! p&qn

OP
OP

csx ! sy ! sc
yx

$ x0, y0%

x 2

a 2 "
y 2

b2 ! 1

x

x0 x
a 2 !

y0 y
b2 ! 1

$ x0, y0 %

x 2

a 2 !
y 2

b2 ! 1

; 61–62 Find . Check that your answer is reasonable by com-
paring the graphs of and .

61. 62.

63. Prove the formula for by the same method as 
for .

64. (a) One way of defining is to say that
and or . Show

that, with this definition,

(b) Another way of defining that is sometimes used is 
to say that and ,

. Show that, with this definition,

65–68 Two curves are orthogonal if their tangent lines are
perpendicular at each point of intersection. Show that the given
families of curves are orthogonal trajectories of each other; that
is, every curve in one family is orthogonal to every curve in the
other family. Sketch both families of curves on the same axes.

65.

66.

67.

68.

69. Show that the ellipse and the hyperbola
are orthogonal trajectories if and
(so the ellipse and hyperbola have the

same foci).

70. Find the value of the number such that the families of
curves and are orthogonal 
trajectories.

71. (a) The van der Waals equation for moles of a gas is

where is the pressure, is the volume, and is the
temperature of the gas. The constant is the universal gas
constant and and are positive constants that are char-
acteristic of a particular gas. If remains constant, use
implicit differentiation to find .

(b) Find the rate of change of volume with respect to pressure
of 1 mole of carbon dioxide at a volume of and V ! 10 L

dV&dP
T

a b
R

P V T

"P !
n 2a
V 2 #$V " nb% ! nRT

n

y ! $ x ! c%"1 y ! a$ x ! k%1&3
a

a 2 " b 2 ! A2 ! B 2
x 2&A2 " y 2&B 2 ! 1 A2 ( a 2

x 2&a 2 ! y 2&b 2 ! 1

y ! ax 3, x 2 ! 3y 2 ! b

y ! cx 2, x 2 ! 2y 2 ! k

x 2 ! y 2 ! ax, x 2 ! y 2 ! by

x 2 ! y 2 ! r 2, ax ! by ! 0

d
dx

$sec"1x% !
1

' x 'sx 2 " 1

y " 0
y ! sec"1x &? sec y ! x 0 # y # $

sec"1x

d
dx

$sec"1x% !
1

xsx 2 " 1

$ # y ( 3$&2
y ! sec"1x &?

sec y ! x 0 # y ( $&2
sec"1x

$d&dx%$sin"1x%
$d&dx%$cos"1x%

f $ x% ! arctan$ x 2 " x%f $x% ! s1 " x 2 arcsin x

f 'f
f '$ x%
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LABORATORY PROJECT FAMILIES OF IMPLICIT CURVES 217

a pressure of . Use
and .

72. (a) Use implicit differentiation to find if
.

(b) Plot the curve in part (a). What do you see? Prove that
what you see is correct.

(c) In view of part (b), what can you say about the
expression for that you found in part (a)?

73. The equation represents a “rotated
ellipse,” that is, an ellipse whose axes are not parallel to the
coordinate axes. Find the points at which this ellipse crosses
the -axis and show that the tangent lines at these points are
parallel.

74. (a) Where does the normal line to the ellipse
at the point intersect the

ellipse a second time? 
; (b) Illustrate part (a) by graphing the ellipse and the normal

line.

75. Find all points on the curve where the slope
of the tangent line is .

76. Find equations of both the tangent lines to the ellipse
that pass through the point .

77. (a) Suppose is a one-to-one differentiable function and its
inverse function is also differentiable. Use implicit 

a ! 3.592 L2-atm!mole2

b ! 0.04267 L!mole
P ! 2.5 atm

y!

CAS
x 2 " xy " y 2 " 1 ! 0

y!

f #1
f

"12, 3#x 2 " 4y 2 ! 36

#1
x 2y 2 " xy ! 2

"#1, 1#x 2 # xy " y 2 ! 3

x

x 2 # xy " y 2 ! 3

differentiation to show that

provided that the denominator is not 0.
(b) If and , find .

78. (a) Show that is one-to-one.
(b) What is the value of ?
(c) Use the formula from Exercise 77(a) to find .

79. The Bessel function of order 0, , satisfies the differ-
ential equation for all values of and its
value at 0 is .
(a) Find .
(b) Use implicit differentiation to find .

80. The figure shows a lamp located three units to the right of 
the -axis and a shadow created by the elliptical region

. If the point is on the edge of the
shadow, how far above the -axis is the lamp located?

"f #1#!"1#
f #1"1#

f "x# ! x " e x
"f #1#!"5#f !"4# ! 2

3f "4# ! 5

"f #1#!"x# !
1

f !"f #1"x##

y ! J"x#

?

x

y

30_5
≈+4¥=5

x
"#5, 0#x 2 " 4y 2 $ 5

y

J %"0#
J!"0#

J"0# ! 1
xxy % " y! " xy ! 0

L A B O R AT O R Y  P R O J E C T FAMILIES OF IMPLICIT CURVES

In this project you will explore the changing shapes of implicitly defined curves as you vary the
constants in a family, and determine which features are common to all members of the family.

1. Consider the family of curves

(a) By graphing the curves with and , determine how many points of inter-
section there are. (You might have to zoom in to find all of them.)

(b) Now add the curves with and to your graphs in part (a). What do you
notice? What about other values of ?

2. (a) Graph several members of the family of curves

Describe how the graph changes as you change the value of .
(b) What happens to the curve when ? Describe what appears on the screen. 

Can you prove it algebraically?
(c) Find by implicit differentiation. For the case , is your expression for

consistent with what you discovered in part (b)?

CAS

y!c ! #1y!

c ! #1
c

x 2 " y 2 " cx 2y 2 ! 1

c
c ! 10c ! 5

c ! 2c ! 0

y 2 # 2x 2"x " 8# ! c$"y " 1#2"y " 9# # x 2%

Computer algebra system requiredCAS
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In this section we use implicit differentiation to find the derivatives of the logarithmic func-
tions and, in particular, the natural logarithmic function . [It can be
proved that logarithmic functions are differentiable; this is certainly plausible from their
graphs (see Figure 12 in Section 1.6).]

PROOF Let . Then

Differentiating this equation implicitly with respect to x, using Formula 3.4.5, we get

and so

If we put in Formula 1, then the factor on the right side becomes and
we get the formula for the derivative of the natural logarithmic function :

By comparing Formulas 1 and 2, we see one of the main reasons that natural logarithms
(logarithms with base e) are used in calculus: The differentiation formula is simplest when

because .

Differentiate .

SOLUTION To use the Chain Rule, we let . Then , so

In general, if we combine Formula 2 with the Chain Rule as in Example 1, we get

or

!
1

x 3 ! 1
!3x 2 " !

3x 2

x 3 ! 1

EXAMPLE 1v

d
dx

#ln t!x"$ !
t"!x"
t!x"

d
dx

!ln u" !
1
u
du
dx

3

dy
dx

!
dy
du

du
dx

!
1
u
du
dx

y ! ln uu ! x 3 ! 1

y ! ln!x 3 ! 1"

ln e ! 1a ! e

d
dx

!ln x" !
1
x

2

loge x ! ln x
ln e ! 1ln aa ! e

dy
dx

!
1

ay ln a
!

1
x ln a

ay!ln a"
dy
dx

! 1

ay ! x

y ! loga x

d
dx

!loga x" !
1

x ln a
1

y ! ln xy ! loga x

218 CHAPTER 3 DIFFERENTIATION RULES

3.6 Derivatives of Logarithmic Functions 

Formula 3.4.5 says that

d
dx

!a x " ! a x ln a
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SECTION 3.6 DERIVATIVES OF LOGARITHMIC FUNCTIONS 219

Find .

SOLUTION Using , we have

Differentiate .

SOLUTION This time the logarithm is the inner function, so the Chain Rule gives

Differentiate .

SOLUTION Using Formula 1 with , we have

Find .

SOLUTION 1

SOLUTION 2 If we first simplify the given function using the laws of logarithms, then the
differentiation becomes easier:

(This answer can be left as written, but if we used a common denominator we would see
that it gives the same answer as in Solution 1.)

3

!
1

x ! 1
"

1
2 ! 1

x " 2"
d
dx

ln
x ! 1

sx " 2
!

d
dx

[ln# x ! 1$ " 1
2 ln# x " 2$]

!
x " 5

2# x ! 1$# x " 2$

!
x " 2 " 1

2 # x ! 1$
# x ! 1$# x " 2$

!
sx " 2
x ! 1

sx " 2 # 1 " # x ! 1$( 1
2 )# x " 2$"1%2

x " 2

d
dx

ln
x ! 1

sx " 2
!

1
x ! 1

sx " 2

d
dx

x ! 1
sx " 2

EXAMPLE 5
d
dx

ln
x ! 1

sx " 2

!
cos x

#2 ! sin x$ ln 10

!
1

#2 ! sin x$ ln 10
d
dx

#2 ! sin x$

f $# x$ !
d
dx

log10#2 ! sin x$

a ! 10

EXAMPLE 4 f # x$ ! log10#2 ! sin x$

f $# x$ ! 1
2 # ln x$"1%2 d

dx
# ln x$ !

1
2sln x

!
1
x

!
1

2xsln x

EXAMPLE 3 f # x$ ! sln x

d
dx

ln#sin x$ !
1

sin x
d
dx

#sin x$ !
1

sin x
cos x ! cot x

EXAMPLE 2
d
dx

ln#sin x$

Figure 1 shows the graph of the function 
of Example 5 together with the graph of its
derivative. It gives a visual check on our cal-
culation. Notice that is large negative
when is rapidly decreasing.f

f $# x$

f

x0

y

1
f

f ª

FIGURE 1
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220 CHAPTER 3 DIFFERENTIATION RULES

Find if .

SOLUTION Since

it follows that

Thus for all .

The result of Example 6 is worth remembering:

Logarithmic Differentiation
The calculation of derivatives of complicated functions involving products, quotients, or
powers can often be simplified by taking logarithms. The method used in the following 
example is called logarithmic differentiation.

Differentiate .

SOLUTION We take logarithms of both sides of the equation and use the Laws of Loga-
rithms to simplify:

Differentiating implicitly with respect to gives

Solving for , we get

Because we have an explicit expression for , we can substitute and write

EXAMPLE 7

dy
dx

!
x 3!4sx 2 ! 1

"3x ! 2#5 $ 3
4x

!
x

x 2 ! 1
"

15
3x ! 2%

y

dy
dx

! y$ 3
4x

!
x

x 2 ! 1
"

15
3x ! 2%

dy!dx

1
y
dy
dx

!
3
4

!
1
x

!
1
2

!
2x

x 2 ! 1
" 5 !

3
3x ! 2

x

ln y ! 3
4 ln x ! 1

2 ln"x 2 ! 1# " 5 ln"3x ! 2#

y !
x 3!4sx 2 ! 1

"3x ! 2#5

4
d
dx

ln & x & !
1
x

f #"x# ! 1!x x " 0

f #"x# !

1
x

if x $ 0

1
"x

""1# !
1
x

if x % 0

f"x# ! 'ln x
ln""x#

if x $ 0
if x % 0

v EXAMPLE 6 f #"x# f"x# ! ln & x &Figure 2 shows the graph of the function
in Example 6 and its derivative

. Notice that when is small, the
graph of is steep and so is
large (positive or negative).

f #"x#y ! ln & x &
xf #"x# ! 1!x

f "x# ! ln & x &

3

_3

_3 3

f
f ª

FIGURE 2

If we hadn’t used logarithmic differentiation in
Example 7, we would have had to use both the
Quotient Rule and the Product Rule. The result-
ing calculation would have been horrendous.

97909_03_ch03_p212-221.qk:97909_03_ch03_p212-221  9/21/10  10:10 AM  Page 220

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).  
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 3.6 DERIVATIVES OF LOGARITHMIC FUNCTIONS 221

Steps in Logarithmic Differentiation

1. Take natural logarithms of both sides of an equation and use the Laws
of Logarithms to simplify.

2. Differentiate implicitly with respect to .
3. Solve the resulting equation for .

If for some values of , then is not defined, but we can write
and use Equation 4. We illustrate this procedure by proving the general version

of the Power Rule, as promised in Section 3.1.

The Power Rule If is any real number and , then

PROOF Let and use logarithmic differentiation:

Therefore

Hence

| You should distinguish carefully between the Power Rule , where the
base is variable and the exponent is constant, and the rule for differentiating exponential
functions , where the base is constant and the exponent is variable.

In general there are four cases for exponents and bases:

1. ( and are constants)

2.

3.

4. To find , logarithmic differentiation can be used, as in the next
example.

Differentiate .

SOLUTION 1 Since both the base and the exponent are variable, we use logarithmic 
differentiation:

y ! f !x"

EXAMPLE 8v

y! ! y# 1
sx "

ln x
2sx $ ! xsx#2 " ln x

2sx $
y!
y

! sx !
1
x

" !ln x"
1

2sx

ln y ! ln xsx ! sx ln x

y ! xsx

!d%dx"& f !x"'t!x"

d
dx

&a t!x"' ! a t!x"!ln a"t!!x"

d
dx

& f !x"'b ! b& f !x"'b# 1 f !!x"

ba
d
dx

!ab " ! 0

&!ax "! ! ax ln a'

&!xn "! ! nxn# 1'

y! ! n
y
x

! n
xn

x
! nxn# 1

y!
y

!
n
x

x " 0ln ( y ( ! ln ( x (n ! n ln ( x (
y ! xn

f !!x" ! nxn# 1

f !x" ! xnn

( y ( ! ( f !x" (
ln f !x"xf !x" $ 0

y!
x

If , we can show that for 
directly from the definition of a 

derivative.
n % 1

f !!0" ! 0x ! 0

Constant base, constant exponent

Variable base, constant exponent

Constant base, variable exponent

Variable base, variable exponent
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222 CHAPTER 3 DIFFERENTIATION RULES

SOLUTION 2 Another method is to write :

(as in Solution 1)

The Number as a Limit
We have shown that if , then . Thus . We now use this fact
to express the number as a limit.

From the definition of a derivative as a limit, we have

Because , we have

Then, by Theorem 2.5.8 and the continuity of the exponential function, we have

Formula 5 is illustrated by the graph of the function in Figure 4 and a
table of values for small values of . This illustrates the fact that, correct to seven decimal
places,

If we put in Formula 5, then as and so an alternative expression
for is

e ! lim
nl !

!1 "
1
n"n

6

e
x l 0"n l !n ! 1#x

e $ 2.7182818

x
y ! %1 " x&1#x

e ! lim
xl 0

%1 " x&1#x5

e ! e1 ! elimxl 0 ln%1" x&1#x
! lim

xl 0
eln%1" x&1#x

! lim
xl 0

%1 " x&1#x

lim
xl 0

ln%1 " x&1#x ! 1

f #%1&! 1

! lim
xl 0

ln%1 " x&1#x

! lim
xl 0

ln%1 " x&$ ln 1
x

! lim
xl 0

1
x

ln%1 " x&

f #%1&! lim
hl 0

f%1 " h&$ f%1&
h

! lim
xl 0

f%1 " x&$ f%1&
x

e
f #%1&! 1f #%x&! 1#xf%x&! ln x

e

! xsx!2 " ln x
2sx "

d
dx

(xsx ) !
d
dx

(esx ln x) ! esx ln x d
dx

(sx ln x)

xsx ! %e ln x&sxFigure 3 illustrates Example 8 by showing the
graphs of and its derivative.f%x&! xsx

FIGURE 3

1

1

f

f ª

x0

y

FIGURE 4

2
3

y=(1+x)!?®

1

0

y

x

x

0.1 2.59374246
0.01 2.70481383
0.001 2.71692393
0.0001 2.71814593
0.00001 2.71826824
0.000001 2.71828047
0.0000001 2.71828169
0.00000001 2.71828181

(1 " x)1/x
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SECTION 3.6 DERIVATIVES OF LOGARITHMIC FUNCTIONS 223

1. Explain why the natural logarithmic function is used
much more frequently in calculus than the other logarithmic
functions .

2–22 Differentiate the function.

2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23–26 Find and .

23. 24.

25. 26.

27–30 Differentiate and find the domain of .

27. 28.

29. 30.

31. If , find .

32. If , find .f !!0"f !x" ! ln!1 " e 2x"

f !!1"f !x" !
ln x
x 2

f !x" ! ln ln ln xf !x" ! ln!x 2 # 2x"

f !x" ! s2 " ln xf !x" !
x

1 # ln!x # 1"

ff

y ! ln!sec x " tan x"y ! ln(x " s1 " x 2 )

y !
ln x
x 2y ! x 2 ln!2x"

y$y!

y ! log2!e# x cos %x"y ! 2x log10sx

H!z" ! ln#a 2 # z 2

a 2 " z 2y ! ln!e# x " xe# x "

y ! ln $ cos!ln x" $y ! tan % ln!ax " b"&

y ! ln $ 1 " t # t 3 $F!s" ! ln ln s

t!r" ! r 2 ln!2r " 1"G!y" ! ln
!2y " 1"5

sy 2 " 1

h!x" ! ln(x " sx 2 # 1)t!x" ! ln(xsx 2 # 1)

f !u" !
u

1 " ln u
f !x" ! sin x ln!5x"

f !x" ! log5!xe x"f !x" ! log10!x 3 " 1"

y !
1

ln x
f !x" ! ln

1
x

f !x" ! ln!sin2x"f !x" ! sin!ln x"

f !x" ! x ln x # x

y ! loga x

y ! ln x 33–34 Find an equation of the tangent line to the curve at the given
point.

33. ,  34. ,  

; 35. If , find . Check that your answer is
reasonable by comparing the graphs of and .

; 36. Find equations of the tangent lines to the curve at
the points and . Illustrate by graphing the curve
and its tangent lines.

37. Let . For what value of is ?

38. Let . For what value of is ?

39–50 Use logarithmic differentiation to find the derivative of the
function.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. Find if .

52. Find if .

53. Find a formula for if .

54. Find .

55. Use the definition of derivative to prove that

56. Show that for any .

y ! ln!x 2 # 3x " 1" !3, 0" y ! x 2 ln x !1, 0"

f f !
f !x" ! sin x " ln x f !!x"

x & 0lim
nl '

'1 "
x
n(n

! e x

lim
xl 0

ln!1 " x"
x

! 1

d 9

dx 9 !x 8 ln x"

f !x" ! ln!x # 1"f !n"!x"

x y ! y xy!

y ! ln!x 2 " y 2 "y!

y ! !ln x"cos xy ! !tan x"1)x

y ! !sin x" ln xy ! !cos x"x
y ! sx xy ! x sin x

y ! x cos xy ! x x

y ! !ln x")x

y ! sx ex2# x!x " 1"2)3y ! # x # 1
x 4 " 1

y !
e# x cos2x
x 2 " x " 1

y ! !x 2 " 2"2!x 4 " 4"4

f !!1" ! 3af !x" ! loga!3x 2 # 2"

f !!%)4" ! 6cf !x" ! cx " ln!cos x"

!e, 1)e"!1, 0"

3.6 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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224 CHAPTER 3 DIFFERENTIATION RULES

We know that if , then the derivative can be interpreted as the rate of change
of with respect to . In this section we examine some of the applications of this idea to
physics, chemistry, biology, economics, and other sciences.

Let’s recall from Section 2.7 the basic idea behind rates of change. If changes from
to , then the change in is

and the corresponding change in is

The difference quotient 

is the average rate of change of y with respect to x over the interval and can be
interpreted as the slope of the secant line in Figure 1. Its limit as is the deriva-
tive , which can therefore be interpreted as the instantaneous rate of change of y
with respect to x or the slope of the tangent line at . Using Leibniz notation, we
write the process in the form

Whenever the function has a specific interpretation in one of the sciences, its
derivative will have a specific interpretation as a rate of change. (As we discussed in Sec-
 tion 2.7, the units for are the units for y divided by the units for x.) We now look at
some of these interpretations in the natural and social sciences.

Physics
If is the position function of a particle that is moving in a straight line, then
represents the average velocity over a time period , and represents the instan-
taneous velocity (the rate of change of displacement with respect to time). The instanta-
neous rate of change of velocity with respect to time is acceleration: .
This was discussed in Sections 2.7 and 2.8, but now that we know the differentiation for-
mulas, we are able to solve problems involving the motion of objects more easily.

The position of a particle is given by the equation

where is measured in seconds and in meters.
(a) Find the velocity at time .
(b) What is the velocity after 2 s? After 4 s?
(c) When is the particle at rest?
(d) When is the particle moving forward (that is, in the positive direction)?
(e) Draw a diagram to represent the motion of the particle.
(f) Find the total distance traveled by the particle during the first five seconds.
(g) Find the acceleration at time and after 4 s.t

EXAMPLE 1v

t
st

s ! f !t" ! t 3 ! 6t 2 " 9t

a!t" ! v#!t" ! s$!t"

v ! ds#dt%t
%s#%ts ! f !t"

dy#dx

y ! f !x"

dy
dx

! lim
%x l 0

%y
%x

P!x1, f !x1""
f #!x1"

%x l 0PQ
$x1, x2%

%y
%x

!
f !x2 " ! f !x1"

x2 ! x1

%y ! f !x2 " ! f !x1"

y

%x ! x2 ! x1

xx2

x1x

xy
dy#dxy ! f !x"

3.7 Rates of Change in the Natural and Social Sciences

FIGURE 1

0 x

y

Îy

⁄

P{⁄, fl}

Q{¤, ‡}

Îx

¤

mPQ ! average rate of change
m=fª(⁄)=instantaneous rate

of change
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SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES 225

(h) Graph the position, velocity, and acceleration functions for .
( i ) When is the particle speeding up? When is it slowing down?
SOLUTION
(a) The velocity function is the derivative of the position function.

(b) The velocity after 2 s means the instantaneous velocity when , that is,

The velocity after 4 s is

(c) The particle is at rest when , that is,

and this is true when or . Thus the particle is at rest after 1 s and after 3 s.
(d) The particle moves in the positive direction when , that is, 

This inequality is true when both factors are positive or when both factors are
negative . Thus the particle moves in the positive direction in the time intervals

and . It moves backward ( in the negative direction) when .
(e) Using the information from part (d) we make a schematic sketch in Figure 2 of the
motion of the particle back and forth along a line (the -axis).
(f) Because of what we learned in parts (d) and (e), we need to calculate the distances
traveled during the time intervals [0, 1], [1, 3], and [3, 5] separately.

The distance traveled in the first second is

From to the distance traveled is

From to the distance traveled is

The total distance is .
(g) The acceleration is the derivative of the velocity function:

(h) Figure 3 shows the graphs of .s, v, and a

a!4" ! 6!4" ! 12 ! 12 m#s2

a!t" !
d 2s
dt 2 !

dv
dt

! 6t ! 12

4 " 4 " 20 ! 28 m

$ f !5" ! f !3" $ ! $ 20 ! 0 $ ! 20 m

t ! 3 t ! 5

$ f !3" ! f !1" $ ! $ 0 ! 4 $ ! 4 m

t ! 1 t ! 3

$ f !1" ! f !0" $ ! $ 4 ! 0 $ ! 4 m

s

t # 1 t $ 3 1 # t # 3
!t # 1"

!t $ 3"

3t 2 ! 12t " 9 ! 3!t ! 1"!t ! 3" $ 0

v!t" $ 0
t ! 1 t ! 3

3t 2 ! 12t " 9 ! 3!t 2 ! 4t " 3" ! 3!t ! 1"!t ! 3" ! 0

v!t" ! 0

v!4" ! 3!4"2 ! 12!4" " 9 ! 9 m#s

v!2" !
ds
dt %

t!2
! 3!2"2 ! 12!2" " 9 ! !3 m#s

t ! 2

v!t" !
ds
dt

! 3t 2 ! 12t " 9

s ! f !t" ! t 3 ! 6t 2 " 9t

0 % t % 5

25

-12

0 5

√ s
a

FIGURE 3

t=0
s=0

t=1
s=4

s

t=3
s=0

FIGURE 2
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226 CHAPTER 3 DIFFERENTIATION RULES

(i) The particle speeds up when the velocity is positive and increasing ( are 
both positive) and also when the velocity is negative and decreasing ( are both
negative). In other words, the particle speeds up when the velocity and acceleration 
have the same sign. (The particle is pushed in the same direction it is moving.) From
Figure 3 we see that this happens when and when . The particle slows
down when have opposite signs, that is, when and when .
Figure 4 summarizes the motion of the particle.

If a rod or piece of wire is homogeneous, then its linear density is uniform
and is defined as the mass per unit length and measured in kilograms per
meter. Suppose, however, that the rod is not homogeneous but that its mass measured
from its left end to a point is , as shown in Figure 5.

The mass of the part of the rod that lies between and is given by
, so the average density of that part of the rod is

If we now let (that is, ), we are computing the average density over
smaller and smaller intervals. The linear density at is the limit of these average
densities as ; that is, the linear density is the rate of change of mass with respect
to length. Symbolically, 

Thus the linear density of the rod is the derivative of mass with respect to length.

EXAMPLE 2

! ! lim
"xl 0

"m
"x

!
dm
dx

"x l 0
x1!

x2 l x1"x l 0

average density !
"m
"x

!
f !x2 " # f !x1"
x2 # x1

"m ! f !x2 " # f !x1"
x ! x2x ! x1

FIGURE 5
x¡ x™

This part of the rod has mass ƒ. 

x

m ! f !x"x

!! ! m#l "

FIGURE 4

1

5

_5

√
s

a

forward

slows
down

slows
down

backward

speeds
up

speeds
up

forward

t0

2 $ t $ 30 % t $ 1v and a
t & 31 $ t $ 2

v and a
v and a

In Module 3.7 you can see an animation
of Figure 4 with an expression for that you can
choose yourself.

TEC
s
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SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES 227

For instance, if , where is measured in meters and in kilograms,
then the average density of the part of the rod given by is

while the density right at is

A current exists whenever electric charges move. Figure 6 shows part of
a wire and electrons moving through a plane surface, shaded red. If is the net charge
that passes through this surface during a time period , then the average current during
this time interval is defined as

If we take the limit of this average current over smaller and smaller time intervals, we
get what is called the current at a given time :

Thus the current is the rate at which charge flows through a surface. It is measured in
units of charge per unit time (often coulombs per second, called amperes).

Velocity, density, and current are not the only rates of change that are important in
physics. Others include power (the rate at which work is done), the rate of heat flow, tem-
perature gradient (the rate of change of temperature with respect to position), and the rate
of decay of a radioactive substance in nuclear physics.

Chemistry

A chemical reaction results in the formation of one or more substances
(called products) from one or more starting materials (called reactants). For instance, the
“equation”

indicates that two molecules of hydrogen and one molecule of oxygen form two mole-
cules of water. Let’s consider the reaction

where A and B are the reactants and C is the product. The concentration of a reactant A
is the number of moles ( 6.022 10 molecules) per liter and is denoted by

. The concentration varies during a reaction, so , , and are all functions of 

EXAMPLE 4

EXAMPLE 3v

!C"!B"!A"!A"
23!1 mole !

A " B l C

2H2 " O2 l 2H2O

I ! lim
#tl0

#Q
#t

!
dQ
dt

t1I

average current !
#Q
#t

!
Q2 $ Q1

t2 $ t1

#t
#Q

% !
dm
dx #

x!1
!

1
2sx #

x!1
! 0.50 kg$m

x ! 1

#m
#x

!
f%1.2& $ f %1&

1.2 $ 1
!

s1.2 $ 1
0.2

' 0.48 kg$m

1 & x & 1.2
mxm ! f%x& ! sx

!
!

!!
! !

!

FIGURE 6

97909_03_ch03_p222-231.qk:97909_03_ch03_p222-231  9/21/10  10:14 AM  Page 227

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).  
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



228 CHAPTER 3 DIFFERENTIATION RULES

time . The average rate of reaction of the product C over a time interval is

But chemists are more interested in the instantaneous rate of reaction, which is
obtained by taking the limit of the average rate of reaction as the time interval
approaches 0:

Since the concentration of the product increases as the reaction proceeds, the derivative
will be positive, and so the rate of reaction of C is positive. The concentrations

of the reactants, however, decrease during the reaction, so, to make the rates of reaction
of A and B positive numbers, we put minus signs in front of the derivatives and

. Since A and B each decrease at the same rate that C increases, we have

More generally, it turns out that for a reaction of the form

we have

The rate of reaction can be determined from data and graphical methods. In some cases
there are explicit formulas for the concentrations as functions of time, which enable us to
compute the rate of reaction (see Exercise 24).

One of the quantities of interest in thermodynamics is compressibility. If a
given substance is kept at a constant temperature, then its volume depends on its pres-
sure . We can consider the rate of change of volume with respect to pressure—namely,
the derivative . As increases, decreases, so . The compressibility is
defined by introducing a minus sign and dividing this derivative by the volume :

Thus measures how fast, per unit volume, the volume of a substance decreases as the
pressure on it increases at constant temperature.

For instance, the volume ( in cubic meters) of a sample of air at was found to
be related to the pressure ( in kilopascals) by the equation

EXAMPLE 5

V !
5.3
P

P
25!CV

"

isothermal compressibility ! " ! #
1
V
dV
dP

V
dV!dP $ 0VPdV!dP

P
V

#
1
a
d "A#
dt

! #
1
b
d "B#
dt

!
1
c
d "C#
dt

!
1
d
d "D#
dt

aA % bB l cC % dD

rate of reaction !
d "C#
dt

! #
d "A#
dt

! #
d "B#
dt

#"#"#"d "B#!dt
d "A#!dt

d "C#!dt

rate of reaction ! lim
&tl 0

&"C#
&t

!
d "C#
dt

&t

&"C#
&t

!
"C#$t2% # "C#$t1%

t2 # t1

t1 ' t ' t2$t%
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SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES 229

The rate of change of with respect to when is

The compressibility at that pressure is

Biology

Let be the number of individuals in an animal or plant popu la-
tion at time . The change in the population size between the times and is

, and so the average rate of growth during the time period 
is

The instantaneous rate of growth is obtained from this average rate of growth by let-
ting the time period approach 0:

Strictly speaking, this is not quite accurate because the actual graph of a population
function would be a step function that is discontinuous whenever a birth or
death occurs and therefore not differentiable. However, for a large animal or plant 
population, we can replace the graph by a smooth approximating curve as in Figure 7.

EXAMPLE 6

FIGURE 7
A smooth curve approximating

a growth function
t

n

0

n ! f !t"

growth rate ! lim
!tl 0

!n
!t

!
dn
dt

!t

average rate of growth !
!n
!t

!
f !t2 " " f !t1"
t2 " t1

t1 # t # t2!n ! f !t2 " " f !t1"
t ! t2t ! t1t

n ! f !t"

$ ! "
1
V
dV
dP #

P!50
!

0.00212
5.3
50

! 0.02 !m3$kPa"$m3

! "
5.3

2500
! " 0.00212 m3$kPa

dV
dP #

P!50
! "

5.3
P 2 #

P!50

P ! 50 kPaPV
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230 CHAPTER 3 DIFFERENTIATION RULES

To be more specific, consider a population of bacteria in a homogeneous nutrient
medium. Suppose that by sampling the population at certain intervals it is determined
that the population doubles every hour. If the initial population is and the time is
measured in hours, then

and, in general,

The population function is .
In Section 3.4 we showed that

So the rate of growth of the bacteria population at time t is

For example, suppose that we start with an initial population of bacteria. Then
the rate of growth after 4 hours is

This means that, after 4 hours, the bacteria population is growing at a rate of about
1109 bacteria per hour.

When we consider the flow of blood through a blood vessel, such as a vein
or artery, we can model the shape of the blood vessel by a cylindrical tube with radius
and length as illustrated in Figure 8.

Because of friction at the walls of the tube, the velocity of the blood is greatest along
the central axis of the tube and decreases as the distance from the axis increases until
becomes 0 at the wall. The relationship between and is given by the law of laminar
flow discovered by the French physician Jean-Louis-Marie Poiseuille in 1840. This law
states that

where is the viscosity of the blood and is the pressure difference between the ends
of the tube. If and are constant, then is a function of with domain .

EXAMPLE 7

!0, R"rvlP
P!

v !
P

4!l
#R2 " r 2 $1

rv
vr

v

FIGURE 8
Blood flow in an artery

R r

l

l
R

dn
dt %

t!4
! 100 ! 24 ln 2 ! 1600 ln 2 & 1109

n0 ! 100

dn
dt

!
d
dt

#n02t$ ! n02t ln 2

d
dx

#ax$ ! ax ln a

n ! n0 2t

f #t$ ! 2tn0

f #3$ ! 2 f #2$ ! 23n0

f #2$ ! 2 f #1$ ! 22n0

f #1$ ! 2 f #0$ ! 2n0

tn0

For more detailed information, see W. Nichols
and M. O’Rourke (eds.), McDonald’s Blood Flow
in Arteries: Theoretical, Experimental, and Clini-
cal Principles, 5th ed. (New York, 2005).
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E. coli bacteria are about 2 micrometers ( m)
long and 0.75 m wide. The image was pro-
duced with a scanning electron microscope.

#
#
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SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES 231

The average rate of change of the velocity as we move from outward to
is given by

and if we let , we obtain the velocity gradient, that is, the instantaneous rate of
change of velocity with respect to r :

Using Equation 1, we obtain

For one of the smaller human arteries we can take , cm, cm,
and , which gives

At cm the blood is flowing at a speed of

and the velocity gradient at that point is

To get a feeling for what this statement means, let’s change our units from centi -
meters to micrometers ( !m). Then the radius of the artery is !m. The
velocity at the central axis is !m!s, which decreases to !m!s at a distance
of !m. The fact that (!m!s)!!m means that, when !m, the
velocity is decreasing at a rate of about !m!s for each micrometer that we proceed
away from the center.

Economics

Suppose is the total cost that a company incurs in producing units
of a certain commodity. The function is called a cost function. If the number of items
produced is increased from to , then the additional cost is , and
the average rate of change of the cost is

The limit of this quantity as , that is, the instantaneous rate of change of cost

EXAMPLE 8v

l 0"x

"C
"x

!
C"x2 # # C"x1#

x2 # x1
!

C"x1 $ "x# # C"x1#
"x

"C ! C"x2 # # C"x1#x2x1

C
xC"x#

74
r ! 20dv!dr ! # 74r ! 20

11,11011,850
801 cm ! 10,000

dv
dr $

r!0.002
! #

4000"0.002#
2"0.027#2

% # 74 "cm!s#!cm

! 1.11 cm!s

v"0.002# % 1.85 % 104"64 % 10# 6 # 4 % 10# 6 #

r ! 0.002

% 1.85 % 104"6.4 % 10# 5 # r 2 #

v !
4000

4"0.027#2
"0.000064 # r 2 #

P ! 4000 dynes!cm2
l ! 2R ! 0.008& ! 0.027

dv
dr

!
P

4&l
"0 # 2r# ! #

Pr
2&l

velocity gradient ! lim
"rl 0

"v
"r

!
dv
dr

"r l 0

"v
"r

!
v"r2 # # v"r1#
r2 # r1

r ! r2r ! r1
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232 CHAPTER 3 DIFFERENTIATION RULES

with respect to the number of items produced, is called the marginal cost by economists:

[Since often takes on only integer values, it may not make literal sense to let
approach 0, but we can always replace by a smooth approximating function as in
Example 6.]

Taking and large (so that is small compared to ), we have

Thus the marginal cost of producing units is approximately equal to the cost of pro-
ducing one more unit [the st unit].

It is often appropriate to represent a total cost function by a polynomial

where represents the overhead cost (rent, heat, maintenance) and the other terms 
represent the cost of raw materials, labor, and so on. (The cost of raw materials may be
proportional to , but labor costs might depend partly on higher powers of because of
overtime costs and inefficiencies involved in large-scale operations.)

For instance, suppose a company has estimated that the cost (in dollars) of producing
items is

Then the marginal cost function is

The marginal cost at the production level of 500 items is

This gives the rate at which costs are increasing with respect to the production level
when and predicts the cost of the 501st item.

The actual cost of producing the 501st item is

Notice that .

Economists also study marginal demand, marginal revenue, and marginal profit, which
are the derivatives of the demand, revenue, and profit functions. These will be considered
in Chapter 4 after we have developed techniques for finding the maximum and minimum
values of functions.

Other Sciences
Rates of change occur in all the sciences. A geologist is interested in knowing the rate at
which an intruded body of molten rock cools by conduction of heat into surrounding rocks.
An engineer wants to know the rate at which water flows into or out of a reservoir. An 

C!!500" # C!501" " C!500"

! $15.01

! " $10,000 # 5!500" # 0.01!500"2%

C!501" " C!500" ! $10,000 # 5!501" # 0.01!501"2%

x ! 500

C!!500" ! 5 # 0.02!500" ! $15&item

C!!x" ! 5 # 0.02x

C!x" ! 10,000 # 5x # 0.01x 2

x

xx

a

C!x" ! a # bx # cx 2 # dx 3

!n # 1"
n

C!!n" # C!n # 1" " C!n"

n$xn$x ! 1

C!x"
$xx

marginal cost ! lim
$xl 0

$C
$x

!
dC
dx
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SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES 233

1–4 A particle moves according to a law of motion ,
, where is measured in seconds and in feet.

(a) Find the velocity at time .
(b) What is the velocity after 3 s?
(c) When is the particle at rest?
(d) When is the particle moving in the positive direction?
(e) Find the total distance traveled during the first 8 s.
(f ) Draw a diagram like Figure 2 to illustrate the motion of the

particle.
(g) Find the acceleration at time and after 3 s.

; (h) Graph the position, velocity, and acceleration functions 
for .

(i) When is the particle speeding up? When is it slowing down?

1.

2.

3. ,  

4. f !t" ! te!t#2

t " 10f !t" ! cos!# t#4"

f !t" ! 0.01t 4 ! 0.04t 3

f !t" ! t 3 ! 12t 2 $ 36t

0 " t " 8

t

t
stt % 0

s ! f !t" 5. Graphs of the velocity functions of two particles are shown,
where is measured in seconds. When is each particle speed-
ing up? When is it slowing down? Explain.
(a) (b)

6. Graphs of the position functions of two particles are shown,
where is measured in seconds. When is each particle speed-
ing up? When is it slowing down? Explain.
(a) (b)

t

s

0 1 t

s

0 1

t

t

√

0 1 t

√

0 1

t

3.7 Exercises

urban geographer is interested in the rate of change of the population density in a city as the
distance from the city center increases. A meteorologist is concerned with the rate of change
of atmospheric pressure with respect to height (see Exercise 17 in Section 3.8).

In psychology, those interested in learning theory study the so-called learning curve,
which graphs the performance of someone learning a skill as a function of the training
time . Of particular interest is the rate at which performance improves as time passes, that
is, .

In sociology, differential calculus is used in analyzing the spread of rumors (or innova-
tions or fads or fashions). If denotes the proportion of a population that knows a rumor
by time , then the derivative represents the rate of spread of the rumor (see Exer -
cise 84 in Section 3.4).

A Single Idea, Many Interpretations
Velocity, density, current, power, and temperature gradient in physics; rate of reaction and
compressibility in chemistry; rate of growth and blood velocity gradient in biology; marginal
cost and marginal profit in economics; rate of heat flow in geology; rate of improvement of
performance in psychology; rate of spread of a rumor in sociology—these are all special
cases of a single mathematical concept, the derivative.

This is an illustration of the fact that part of the power of mathematics lies in its 
abstractness. A single abstract mathematical concept (such as the derivative) can have dif-
ferent interpretations in each of the sciences. When we develop the properties of the 
mathematical concept once and for all, we can then turn around and apply these results to
all of the sciences. This is much more efficient than developing properties of special con-
cepts in each separate science. The French mathematician Joseph Fourier (1768–1830) put
it succinctly: “Mathematics compares the most diverse phenomena and discovers the secret
analogies that unite them.”

dp#dtt
p!t"

dP#dt
t

P!t"

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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234 CHAPTER 3 DIFFERENTIATION RULES

7. The height (in meters) of a projectile shot vertically upward
from a point 2 m above ground level with an initial velocity of

is after seconds.
(a) Find the velocity after 2 s and after 4 s.
(b) When does the projectile reach its maximum height?
(c) What is the maximum height?
(d) When does it hit the ground?
(e) With what velocity does it hit the ground?

8. If a ball is thrown vertically upward with a velocity of 
80 ft!s, then its height after seconds is .
(a) What is the maximum height reached by the ball?
(b) What is the velocity of the ball when it is 96 ft above the

ground on its way up? On its way down?

9. If a rock is thrown vertically upward from the surface of 
Mars with velocity , its height after seconds is

.
(a) What is the velocity of the rock after 2 s?
(b) What is the velocity of the rock when its height is 25 m on

its way up? On its way down?

10. A particle moves with position function

(a) At what time does the particle have a velocity of ?
(b) At what time is the acceleration 0? What is the significance

of this value of ?

11. (a) A company makes computer chips from square wafers 
of silicon. It wants to keep the side length of a wafer very
close to 15 mm and it wants to know how the area of
a wafer changes when the side length x changes. Find

and explain its meaning in this situation.
(b) Show that the rate of change of the area of a square with

respect to its side length is half its perimeter. Try to explain
geometrically why this is true by drawing a square whose
side length x is increased by an amount . How can you
approximate the resulting change in area if is small?

12. (a) Sodium chlorate crystals are easy to grow in the shape of
cubes by allowing a solution of water and sodium chlorate
to evaporate slowly. If V is the volume of such a cube with
side length x, calculate when mm and explain
its meaning.

(b) Show that the rate of change of the volume of a cube with
respect to its edge length is equal to half the surface area of
the cube. Explain geometrically why this result is true by
arguing by analogy with Exercise 11(b).

13. (a) Find the average rate of change of the area of a circle with
respect to its radius as changes from
(i) 2 to 3 (ii) 2 to 2.5 (iii) 2 to 2.1

(b) Find the instantaneous rate of change when .
(c) Show that the rate of change of the area of a circle with

respect to its radius (at any ) is equal to the circumference
of the circle. Try to explain geometrically why this is true
by drawing a circle whose radius is increased by an 

t

r

r ! 2

r r

dV!dx x ! 3

!A !x
!x

A""15#

A"x#

t

20 m!s

s ! t 4 # 4t 3 # 20t 2 $ 20t t % 0

h ! 15t # 1.86t 2
15 m!s t

t s ! 80t # 16t 2

24.5 m!s h ! 2 $ 24.5t # 4.9t 2

amount . How can you approximate the resulting change
in area if is small?

14. A stone is dropped into a lake, creating a circular ripple that
travels outward at a speed of 60 cm!s. Find the rate at which
the area within the circle is increasing after (a) 1 s, (b) 3 s, 
and (c) 5 s. What can you conclude?

15. A spherical balloon is being inflated. Find the rate of increase
of the surface area with respect to the radius
when is (a) 1 ft, (b) 2 ft, and (c) 3 ft. What conclusion can
you make?

16. (a) The volume of a growing spherical cell is , where
the radius is measured in micrometers (1 &m ).
Find the average rate of change of with respect to when

changes from
(i) 5 to 8 &m (ii) 5 to 6 &m (iii) 5 to 5.1 &m

(b) Find the instantaneous rate of change of with respect to
when &m.

(c) Show that the rate of change of the volume of a sphere with
respect to its radius is equal to its surface area. Explain
geometrically why this result is true. Argue by analogy with
Exercise 13(c).

17. The mass of the part of a metal rod that lies between its left
end and a point meters to the right is kg. Find the linear
density (see Example 2) when is (a) 1 m, (b) 2 m, and 
(c) 3 m. Where is the density the highest? The lowest?

18. If a tank holds 5000 gallons of water, which drains from the
bottom of the tank in 40 minutes, then Torricelli’s Law gives
the volume of water remaining in the tank after minutes as

Find the rate at which water is draining from the tank after 
(a) 5 min, (b) 10 min, (c) 20 min, and (d) 40 min. At what time
is the water flowing out the fastest? The slowest? Summarize
your findings.

19. The quantity of charge in coulombs (C) that has passed
through a point in a wire up to time (measured in seconds) is
given by . Find the current when
(a) s and (b) s. [See Example 3. The unit of cur-
rent is an ampere ( A C!s).] At what time is the current
lowest?

20. Newton’s Law of Gravitation says that the magnitude of the
force exerted by a body of mass on a body of mass is

where is the gravitational constant and is the distance
between the bodies.
(a) Find and explain its meaning. What does the minus

sign indicate?
(b) Suppose it is known that the earth attracts an object with 

a force that decreases at the rate of 2 N!km when 
r ! 20,000 km. How fast does this force change when 
r ! 10,000 km?

!r

dF!dr

G r

F !
GmM
r 2

m M
F

1 ! 1
t ! 0.5 t ! 1

Q"t# ! t 3 # 2t 2 $ 6t $ 2
t

Q

V ! 5000(1 # 1
40 t)2 0 ' t ' 40

V t

x
x 3x 2

r ! 5
V r

r
V r

r ! 10# 6 m
V ! 4

3 (r 3

r
"S ! 4(r 2 # r

!A !r
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SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES 235

21. The force acting on a body with mass and velocity is the
rate of change of momentum: . If is constant,
this becomes , where is the acceleration. But
in the theory of relativity the mass of a particle varies with as
follows: , where is the mass of the
particle at rest and is the speed of light. Show that

22. Some of the highest tides in the world occur in the Bay of
Fundy on the Atlantic Coast of Canada. At Hopewell Cape the
water depth at low tide is about 2.0 m and at high tide it is
about 12.0 m. The natural period of oscillation is a little more
than 12 hours and on June 30, 2009, high tide occurred at 
6:45 AM. This helps explain the following model for the water
depth (in meters) as a function of the time (in hours after
midnight) on that day:

How fast was the tide rising (or falling) at the following times?
(a) 3:00 AM (b) 6:00 AM
(c) 9:00 AM (d) Noon

23. Boyle’s Law states that when a sample of gas is compressed at
a constant temperature, the product of the pressure and the vol-
ume remains constant: .
(a) Find the rate of change of volume with respect to pressure.
(b) A sample of gas is in a container at low pressure and is

steadily compressed at constant temperature for 10 min-
utes. Is the volume decreasing more rapidly at the begin-
ning or the end of the 10 minutes? Explain.

(c) Prove that the isothermal compressibility (see 
Example 5) is given by .

24. If, in Example 4, one molecule of the product C is formed 
from one molecule of the reactant A and one molecule of the
reactant B, and the initial concentrations of A and B have a
common value , then

where is a constant.
(a) Find the rate of reaction at time .
(b) Show that if C , then

(c) What happens to the concentration as ?
(d) What happens to the rate of reaction as ?
(e) What do the results of parts (c) and (d) mean in practical

terms?

25. In Example 6 we considered a bacteria population that 
doubles every hour. Suppose that another population of bac-
teria triples every hour and starts with 400 bacteria. Find an
expression for the number of bacteria after hours and use it
to estimate the rate of growth of the bacteria population after
2.5 hours.

n t

t l !
t l !

dx
dt

! k!a " x"2

x ! # $
t

k

#C$ ! a 2kt%!akt # 1"

#A$ ! #B$ ! a moles%L

$ ! 1%P

PV ! C

D!t" ! 7 # 5 cos#0.503!t " 6.75"$

D t

F !
m0a

!1 " v 2%c 2"3%2

c
m ! m0%s1 " v 2%c 2 m0

v
F ! ma a ! dv%dt

F ! !d%dt"!mv" m
F m v 26. The number of yeast cells in a laboratory culture increases 

rapidly initially but levels off eventually. The population is
modeled by the function

where is measured in hours. At time the population is
20 cells and is increasing at a rate of . Find the
values of and . According to this model, what happens to
the yeast population in the long run?

; 27. The table gives the population of the world in the 20th 
century.

(a) Estimate the rate of population growth in 1920 and in 1980
by averaging the slopes of two secant lines.

(b) Use a graphing calculator or computer to find a cubic func-
tion (a third-degree polynomial) that models the data. 

(c) Use your model in part (b) to find a model for the rate of
population growth in the 20th century.

(d) Use part (c) to estimate the rates of growth in 1920 and
1980. Compare with your estimates in part (a).

(e) Estimate the rate of growth in 1985.

; 28. The table shows how the average age of first marriage of
Japanese women varied in the last half of the 20th century.

(a) Use a graphing calculator or computer to model these data
with a fourth-degree polynomial.

(b) Use part (a) to find a model for .
(c) Estimate the rate of change of marriage age for women 

in 1990.
(d) Graph the data points and the models for .

29. Refer to the law of laminar flow given in Example 7. Consider
a blood vessel with radius 0.01 cm, length 3 cm, pressure dif-
ference , and viscosity .
(a) Find the velocity of the blood along the centerline , at

radius cm, and at the wall .r ! 0.005 r ! R ! 0.01 cm
r ! 0

3000 dynes%cm2 % ! 0.027

A and A&

A&!t"

a b
12 cells%hour

t t ! 0

n ! f !t" !
a

1 # be" 0.7t

Population Population
Year (in millions) Year (in millions)

1900 1650 1960 3040
1910 1750 1970 3710
1920 1860 1980 4450
1930 2070 1990 5280
1940 2300 2000 6080
1950 2560

t t

1950 23.0 1980 25.2
1955 23.8 1985 25.5
1960 24.4 1990 25.9
1965 24.5 1995 26.3
1970 24.2 2000 27.0
1975 24.7

A!t"A!t"
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236 CHAPTER 3 DIFFERENTIATION RULES

(b) Find the velocity gradient at , , and
.

(c) Where is the velocity the greatest? Where is the velocity
changing most?

30. The frequency of vibrations of a vibrating violin string is given
by

where is the length of the string, is its tension, and is 
its linear density. [See Chapter 11 in D. E. Hall, Musical
Acoustics, 3rd ed. (Pacific Grove, CA, 2002).]
(a) Find the rate of change of the frequency with respect to

(i) the length (when and are constant),
(ii) the tension (when and are constant), and

(iii) the linear density (when and are constant).
(b) The pitch of a note (how high or low the note sounds) is

determined by the frequency . (The higher the frequency,
the higher the pitch.) Use the signs of the derivatives in 
part (a) to determine what happens to the pitch of a note
(i) when the effective length of a string is decreased by

placing a finger on the string so a shorter portion of
the string vibrates,

(ii) when the tension is increased by turning a tuning peg,
(iii) when the linear density is increased by switching to

another string.

31. The cost, in dollars, of producing yards of a certain fabric is

(a) Find the marginal cost function.
(b) Find and explain its meaning. What does it 

predict?
(c) Compare with the cost of manufacturing the 201st

yard of fabric.

32. The cost function for production of a commodity is

(a) Find and interpret .
(b) Compare with the cost of producing the 101st item.

33. If is the total value of the production when there are 
workers in a plant, then the average productivity of the work-

force at the plant is

(a) Find . Why does the company want to hire more 
workers if ?

(b) Show that if is greater than the average 
productivity.

34. If denotes the reaction of the body to some stimulus of
strength , the sensitivity is defined to be the rate of change x S

R

A!!x" " 0 p!!x"
A!!x" " 0

A!!x"

A!x" !
p!x"
x

x
p!x"

C!!100"
C!!100"

C!x" ! 339 # 25x $ 0.09x 2 # 0.0004x 3

C!!200"

C!!200"

C!x" ! 1200 # 12x $ 0.1x 2 # 0.0005x 3

x

f

L T
L %

T %

L T %

f !
1

2L #T
%

r ! 0.01
r ! 0 r ! 0.005 of the reaction with respect to . A particular example is that

when the brightness of a light source is increased, the eye
reacts by decreasing the area of the pupil. The experimental
formula

has been used to model the dependence of on when is
measured in square millimeters and is measured in appropri-
ate units of brightness.
(a) Find the sensitivity.

; (b) Illustrate part (a) by graphing both and as functions 
of . Comment on the values of and at low levels of
brightness. Is this what you would expect?

35. The gas law for an ideal gas at absolute temperature (in
kelvins), pressure  (in atmospheres), and volume (in liters)
is , where is the number of moles of the gas and

is the gas constant. Suppose that, at a certain
instant, atm and is increasing at a rate of
0.10 atm$min and and is decreasing at a rate of
0.15 L$min. Find the rate of change of with respect to time
at that instant if mol.

36. In a fish farm, a population of fish is introduced into a pond
and harvested regularly. A model for the rate of change of the
fish population is given by the equation

where is the birth rate of the fish, is the maximum popula-
tion that the pond can sustain (called the carrying capacity),
and is the percentage of the population that is harvested.
(a) What value of corresponds to a stable population?
(b) If the pond can sustain 10,000 fish, the birth rate is 5%, and

the harvesting rate is 4%, find the stable population level.
(c) What happens if is raised to 5%?

37. In the study of ecosystems, predator-prey models are often
used to study the interaction between species. Consider popu-
lations of tundra wolves, given by , and caribou, given by

, in northern Canada. The interaction has been modeled by
the equations

(a) What values of and correspond to stable 
populations?

(b) How would the statement “The caribou go extinct” be 
represented mathematically?

(c) Suppose that , , , and 
. Find all population pairs that lead to

stable populations. According to this model, is it possible
for the two species to live in balance or will one or both
species become extinct?

R
x

x

R !
40 # 24x 0.4

1 # 4x 0.4

R x R

!C, W "d ! 0.0001
c ! 0.05b ! 0.001a ! 0.05

dW$dtdC$dt

dW
dt

! $ cW # dCW
dC
dt

! aC $ bCW

C!t"
W!t"

&

dP$dt
&

Pcr0

dP
dt

! r0%1 $
P!t"
Pc
&P!t" $ &P!t"

n ! 10
T

V ! 10 L
P ! 8.0

R ! 0.0821
nPV ! nRT

VP
T

SRx
SR

x
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SECTION 3.8 EXPONENTIAL GROWTH AND DECAY 237

In many natural phenomena, quantities grow or decay at a rate proportional to their size. For
instance, if is the number of individuals in a population of animals or bacteria at
time , then it seems reasonable to expect that the rate of growth is proportional to the
population ; that is, for some constant . Indeed, under ideal conditions
(unlimited environment, adequate nutrition, immunity to disease) the mathematical model
given by the equation predicts what actually happens fairly accurately. Another
example occurs in nuclear physics where the mass of a radioactive substance decays at a rate
proportional to the mass. In chemistry, the rate of a unimolecular first-order reaction is pro-
portional to the concentration of the substance. In finance, the value of a savings account
with continuously compounded interest increases at a rate proportional to that value.

In general, if is the value of a quantity at time and if the rate of change of with
respect to is proportional to its size at any time, then

where is a constant. Equation 1 is sometimes called the law of natural growth (if )
or the law of natural decay (if ). It is called a differential equation because it 
involves an unknown function and its derivative . 

It’s not hard to think of a solution of Equation 1. This equation asks us to find a function
whose derivative is a constant multiple of itself. We have met such functions in this chap-
ter. Any exponential function of the form , where is a constant, satisfies

We will see in Section 9.4 that any function that satisfies must be of the form
. To see the significance of the constant , we observe that

Therefore is the initial value of the function.

Theorem The only solutions of the differential equation are the
exponential functions

Population Growth
What is the significance of the proportionality constant k? In the context of population
growth, where is the size of a population at time , we can write

The quantity

is the growth rate divided by the population size; it is called the relative growth rate. 
According to , instead of saying “the growth rate is proportional to population size” 3

1
P
dP
dt

1
P
dP
dt

! kor
dP
dt

! kP3

tP!t"

k ! 0
k " 0k

2

y!t" ! y!0"ekt

dy#dt ! ky

C

y!0" ! Cek!0 ! C

Cy ! Cekt
dy#dt ! ky

y#!t" ! C!kekt " ! k!Cekt " ! ky!t"

Cy!t" ! Cekt

dy#dty

dy
dt

! ky1

y!t"t
ytyy!t"

f #!t" ! kf !t"

kf #!t" ! kf !t"f !t"
f #!t"t

y ! f !t"

3.8 Exponential Growth and Decay  
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238 CHAPTER 3 DIFFERENTIATION RULES

we could say “the relative growth rate is constant.” Then says that a population with 
constant relative growth rate must grow exponentially. Notice that the relative growth rate k
appears as the coefficient of t in the exponential function . For instance, if

and t is measured in years, then the relative growth rate is k ! 0.02 and the population
grows at a relative rate of 2% per year. If the population at time 0 is , then the expression
for the population is

Use the fact that the world population was 2560 million in 1950 and
3040 million in 1960 to model the population of the world in the second half of the 20th
century. (Assume that the growth rate is proportional to the population size.) What is the
relative growth rate? Use the model to estimate the world population in 1993 and to pre-
dict the population in the year 2020.

SOLUTION We measure the time t in years and let t ! 0 in the year 1950. We measure the
population in millions of people. Then and Since we are
assuming that , Theorem 2 gives

The relative growth rate is about 1.7% per year and the model is

We estimate that the world population in 1993 was

The model predicts that the population in 2020 will be

The graph in Figure 1 shows that the model is fairly accurate to the end of the 20th cen-
tury (the dots represent the actual population), so the estimate for 1993 is quite reliable.
But the prediction for 2020 is riskier.

2

EXAMPLE 1v

FIGURE 1
A model for world population growth
in the second half of the 20th century

6000

P

t200 40
Years since 1950

Population
(in millions)

P=2560e0.017185t

P!70" ! 2560e 0.017185!70" # 8524 million

P!43" ! 2560e 0.017185!43" # 5360 million

P!t" ! 2560e 0.017185t

k !
1

10
ln

3040
2560

# 0.017185

P!10" ! 2560e 10k ! 3040

P!t" ! P!0"ekt ! 2560ekt
dP$dt ! kP

P!10) ! 3040.P!0" ! 2560P!t"

P!t" ! P0e 0.02t

P0

Cekt

dP
dt

! 0.02P
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SECTION 3.8 EXPONENTIAL GROWTH AND DECAY 239

Radioactive Decay
Radioactive substances decay by spontaneously emitting radiation. If is the mass 
remaining from an initial mass of the substance after time t, then the relative decay rate

has been found experimentally to be constant. (Since is negative, the relative decay
rate is positive.) It follows that

where k is a negative constant. In other words, radioactive substances decay at a rate pro-
portional to the remaining mass. This means that we can use to show that the mass 
decays exponentially:

Physicists express the rate of decay in terms of half-life, the time required for half of any
given quantity to decay.

The half-life of radium-226 is 1590 years.
(a) A sample of radium-226 has a mass of 100 mg. Find a formula for the mass of the
sample that remains after years.
(b) Find the mass after 1000 years correct to the nearest milligram.
(c) When will the mass be reduced to 30 mg?

SOLUTION
(a) Let be the mass of radium-226 (in milligrams) that remains after years. Then

and , so gives

In order to determine the value of , we use the fact that . Thus

and

Therefore

We could use the fact that to write the expression for in the alternative
form

(b) The mass after 1000 years is 

(c) We want to find the value of such that , that is,

2

2

e!!ln 2"t#1590 ! 0.3or100e!!ln 2"t#1590 ! 30

m!t" ! 30t

m!1000" ! 100e!!ln 2"1000#1590 $ 65 mg

m!t" ! 100 " 2!t#1590

m!t"e ln 2 ! 2

m!t" ! 100e!!ln 2"t#1590

k ! !
ln 2
1590

1590k ! ln 1
2 ! !ln 2

e 1590k ! 1
2so100e 1590k ! 50

y!1590" ! 1
2 !100"k

EXAMPLE 2v

m!t" ! m!0"ekt ! 100ekt
y!0" ! 100dm#dt ! km

tm!t"

t

m!t" ! m0ekt

dm
dt

! km

dm#dt

!
1
m

dm
dt

m0

m!t"

97909_03_ch03_p232-241.qk:97909_03_ch03_p232-241  9/21/10  10:23 AM  Page 239

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).  
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



240 CHAPTER 3 DIFFERENTIATION RULES

m=30
0 4000

150

m=100e_(ln 2)t/1590

FIGURE 2

We solve this equation for by taking the natural logarithm of both sides:

Thus

As a check on our work in Example 2, we use a graphing device to draw the graph of 
in Figure 2 together with the horizontal line . These curves intersect when

, and this agrees with the answer to part (c).

Newton’s Law of Cooling
Newton’s Law of Cooling states that the rate of cooling of an object is proportional to
the temperature difference between the object and its surroundings, provided that this dif-
ference is not too large. (This law also applies to warming.) If we let be the temper-
ature of the object at time and be the temperature of the surroundings, then we can
formulate Newton’s Law of Cooling as a differential equation:

where is a constant. This equation is not quite the same as Equation 1, so we make the
change of variable . Because is constant, we have and so
the equation becomes

We can then use to find an expression for , from which we can find .

A bottle of soda pop at room temperature ( F) is placed in a refrigerator
where the temperature is F. After half an hour the soda pop has cooled to F.
(a) What is the temperature of the soda pop after another half hour?
(b) How long does it take for the soda pop to cool to F?

SOLUTION
(a) Let be the temperature of the soda after minutes. The surrounding temperature
is , so Newton’s Law of Cooling states that

If we let , then , so satisfies

and by we have

We are given that , so and

2

2

e30k ! 17
2828e30k ! 17

y!30" ! 61 ! 44 ! 17T!30" ! 61

y!t" ! y!0"ekt ! 28ekt

y!0" ! 28
dy
dt

! ky

yy!0" ! T!0" ! 44 ! 72 ! 44 ! 28y ! T ! 44

EXAMPLE 3

dT
dt

! k!T ! 44)

Ts ! 44"F
tT!t"

50"

61"44"
72"

Ty

dy
dt

! ky

y #!t" ! T #!t"Tsy!t" ! T!t" ! Ts

t

k

dT
dt

! k!T ! Ts"

Tst
T!t"

t # 2800
m ! 30m!t"

t ! !1590
ln 0.3
ln 2

# 2762 years

!
ln 2
1590

t ! ln 0.3
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SECTION 3.8 EXPONENTIAL GROWTH AND DECAY 241

FIGURE 3

72
T

t600 30 90

44

Taking logarithms, we have

Thus

So after another half hour the pop has cooled to about F.
(b) We have when

The pop cools to F after about 1 hour 33 minutes.

Notice that in Example 3, we have 

which is to be expected. The graph of the temperature function is shown in Figure 3.

Continuously Compounded Interest

If $1000 is invested at 6% interest, compounded annually, then after 
1 year the investment is worth , after 2 years it’s worth

, and after years it’s worth . In general, 
if an amount is invested at an interest rate in this example), then after 

years it’s worth . Usually, however, interest is compounded more frequently,
say, times a year. Then in each compounding period the interest rate is and there are

compounding periods in years, so the value of the investment is

For instance, after 3 years at 6% interest a $1000 investment will be worth

EXAMPLE 4

with daily compounding$1000!1 !
0.06
365 "365 ! 3

! $1197.20

with monthly compounding$1000#1.005$36 ! $1196.68

with quarterly compounding$1000#1.015$12 ! $1195.62

with semiannual compounding$1000#1.03$6 ! $1194.05

with annual compounding$1000#1.06$3 ! $1191.02

A0!1 !
r
n"nt

tnt
r%nn

A0#1 ! r$tt
#r ! 0.06rA0

$1000#1.06$tt$&1000#1.06$'1.06 ! $1123.60
$1000#1.06$ ! $1060

lim
tl "

T# t$ ! lim
tl "

#44 ! 28e# 0.01663t$ ! 44 ! 28 ! 0 ! 44

50$

t !
ln( 6

28)
# 0.01663

( 92.6

e# 0.01663t ! 6
28

44 ! 28e# 0.01663t ! 50

T# t$ ! 50
54$

T# 60$ ! 44 ! 28e# 0.01663#60$ ( 54.3

T# t$ ! 44 ! 28e# 0.01663t

y# t$ ! 28e# 0.01663t

k !
ln(17

28)
30

( # 0.01663
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242 CHAPTER 3 DIFFERENTIATION RULES

You can see that the interest paid increases as the number of compounding periods
increases. If we let , then we will be compounding the interest continuously and
the value of the investment will be

(where )

But the limit in this expression is equal to the number e (see Equation 3.6.6). So with
continuous compounding of interest at interest rate r, the amount after t years is

If we differentiate this equation, we get

which says that, with continuous compounding of interest, the rate of increase of an
investment is proportional to its size.

Returning to the example of $1000 invested for 3 years at 6% interest, we see that
with continuous compounding of interest the value of the investment will be

Notice how close this is to the amount we calculated for daily compounding, $1197.20.
But the amount is easier to compute if we use continuous compounding.

A!3" ! $1000e !0.06"3 ! $1197.22

dA
dt

! rA0ert ! rA!t"

A!t" ! A0ert

m ! n#r! A0$ lim
ml !

%1 "
1
m&m'rt

! A0$lim
n l !

%1 "
r
n&n#r'rt

! lim
n l !

A0$%1 "
r
n&n#r'rt

A!t" ! lim
n l !

A0%1 "
r
n&nt

n l !
!n"

1. A population of protozoa develops with a constant relative
growth rate of 0.7944 per member per day. On day zero the
population consists of two members. Find the population size
after six days.

2. A common inhabitant of human intestines is the bacterium
Escherichia coli. A cell of this bacterium in a nutrient-broth
medium divides into two cells every 20 minutes. The initial
population of a culture is 60 cells.
(a) Find the relative growth rate.
(b) Find an expression for the number of cells after hours.t

(c) Find the number of cells after 8 hours.
(d) Find the rate of growth after 8 hours.
(e) When will the population reach 20,000 cells?

3. A bacteria culture initially contains 100 cells and grows at a
rate proportional to its size. After an hour the population has
increased to 420.
(a) Find an expression for the number of bacteria after hours.
(b) Find the number of bacteria after 3 hours.
(c) Find the rate of growth after 3 hours.
(d) When will the population reach 10,000?

t

3.8 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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SECTION 3.8 EXPONENTIAL GROWTH AND DECAY 243

4. A bacteria culture grows with constant relative growth rate.
The bacteria count was 400 after 2 hours and 25,600 after 
6 hours.
(a) What is the relative growth rate? Express your answer as

a percentage.
(b) What was the intitial size of the culture?
(c) Find an expression for the number of bacteria after hours.
(d) Find the number of cells after 4.5 hours.
(e) Find the rate of growth after 4.5 hours.
(f ) When will the population reach 50,000?

5. The table gives estimates of the world population, in millions,
from 1750 to 2000.
(a) Use the exponential model and the population figures for

1750 and 1800 to predict the world population in 1900
and 1950. Compare with the actual figures.

(b) Use the exponential model and the population figures for
1850 and 1900 to predict the world population in 1950.
Compare with the actual population.

(c) Use the exponential model and the population figures for
1900 and 1950 to predict the world population in 2000.
Compare with the actual population and try to explain the
discrepancy.

6. The table gives the population of India, in millions, for the 
second half of the 20th century.

(a) Use the exponential model and the census figures for 1951
and 1961 to predict the population in 2001. Compare with
the actual figure.

(b) Use the exponential model and the census figures for 1961
and 1981 to predict the population in 2001. Compare with
the actual population. Then use this model to predict the
population in the years 2010 and 2020.

; (c) Graph both of the exponential functions in parts (a) and 
(b) together with a plot of the actual population. Are these
models reasonable ones?

7. Experiments show that if the chemical reaction 

takes place at , the rate of reaction of dinitrogen pent-45!C

N2O5 l 2NO2 " 1
2 O2

t

oxide is proportional to its concentration as follows:

(See Example 4 in Section 3.7.)
(a) Find an expression for the concentration N O after 

seconds if the initial concentration is .
(b) How long will the reaction take to reduce the concentra-

tion of N O to 90% of its original value?

8. Strontium-90 has a half-life of 28 days. 
(a) A sample has a mass of 50 mg initially. Find a formula

for the mass remaining after days.
(b) Find the mass remaining after 40 days.
(c) How long does it take the sample to decay to a mass 

of 2 mg?
(d) Sketch the graph of the mass function.

9. The half-life of cesium-137 is 30 years. Suppose we have a
100-mg sample.
(a) Find the mass that remains after years.
(b) How much of the sample remains after 100 years?
(c) After how long will only 1 mg remain?

10. A sample of tritium-3 decayed to 94.5% of its original
amount after a year.
(a) What is the half-life of tritium-3?
(b) How long would it take the sample to decay to 20% of its

original amount?

11. Scientists can determine the age of ancient objects by the
method of radiocarbon dating. The bombardment of the
upper atmosphere by cosmic rays converts nitrogen to a
radioactive isotope of carbon, C, with a half-life of about
5730 years. Vegetation absorbs carbon dioxide through the
atmosphere and animal life assimilates C through food
chains. When a plant or animal dies, it stops replacing its 
carbon and the amount of C begins to decrease through
radioactive decay. Therefore the level of radioactivity must
also decay exponentially.
A parchment fragment was discovered that had about 74%

as much C radioactivity as does plant material on the earth
today. Estimate the age of the parchment.

12. A curve passes through the point and has the property
that the slope of the curve at every point is twice the 
-coordinate of . What is the equation of the curve?

13. A roast turkey is taken from an oven when its temperature
has reached and is placed on a table in a room where
the temperature is .
(a) If the temperature of the turkey is after half an

hour, what is the temperature after 45 minutes?
(b) When will the turkey have cooled to ?

14. In a murder investigation, the temperature of the corpse was
at 1:30 PM and an hour later. Normal body

temperature is and the temperature of the surround-
ings was . When did the murder take place?20.0!C

37.0!C
32.5!C 30.3!C

100!F

150!F
75!F

185!F

Py
P

!0, 5"

14

14

14

14

t

t

52

Ct
5#2$

#
d$N2O5#

dt
! 0.0005$N2O5#

Year Population

1951 361
1961 439
1971 548
1981 683
1991 846
2001 1029

Year Population Year Population

1750 790 1900 1650
1800 980 1950 2560
1850 1260 2000 6080
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244 CHAPTER 3 DIFFERENTIATION RULES

15. When a cold drink is taken from a refrigerator, its temperature
is C. After 25 minutes in a C room its temperature has
increased to C.
(a) What is the temperature of the drink after 50 minutes?
(b) When will its temperature be C?

16. A freshly brewed cup of coffee has temperature C in a 
C room. When its temperature is C, it is cooling at a rate

of C per minute. When does this occur?

17. The rate of change of atmospheric pressure with respect to
altitude is proportional to , provided that the temperature is
constant. At C the pressure is kPa at sea level and

kPa at m.
(a) What is the pressure at an altitude of 3000 m?
(b) What is the pressure at the top of Mount McKinley, at an

altitude of 6187 m?

18. (a) If $1000 is borrowed at 8% interest, find the amounts 
due at the end of 3 years if the interest is compounded

87.14 h ! 1000
15! 101.3

h P
P

1!
20! 70!

95!

15!

10!
5! 20!

(i) annually, (ii) quarterly, (iii) monthly, (iv) weekly, 
(v) daily, (vi) hourly, and (vii) continuously.

; (b) Suppose $1000 is borrowed and the interest is com pounded
continuously. If is the amount due after years, where

, graph for each of the interest rates 6%, 8%,
and 10% on a common screen.

19. (a) If $3000 is invested at 5% interest, find the value of the
investment at the end of 5 years if the interest is com -
pounded (i) annually, (ii) semiannually, (iii) monthly, 
(iv) weekly, (v) daily, and (vi) continuously.

(b) If is the amount of the investment at time for the case
of continuous compounding, write a differential equation
and an initial condition satisfied by .

20. (a) How long will it take an investment to double in value if
the interest rate is 6% compounded continuously?

(b) What is the equivalent annual interest rate?

A!t" t
A!t"0 " t " 3

A!t"

tA!t"

If we are pumping air into a balloon, both the volume and the radius of the balloon are 
increasing and their rates of increase are related to each other. But it is much easier to mea-
sure directly the rate of increase of the volume than the rate of increase of the radius.

In a related rates problem the idea is to compute the rate of change of one quantity in
terms of the rate of change of another quantity (which may be more easily measured). The
procedure is to find an equation that relates the two quantities and then use the Chain Rule
to differentiate both sides with respect to time.

Air is being pumped into a spherical balloon so that its volume increases
at a rate of . How fast is the radius of the balloon increasing when the diameter
is 50 cm?

SOLUTION We start by identifying two things:

the given information:

the rate of increase of the volume of air is 

and the unknown:

the rate of increase of the radius when the diameter is 50 cm

In order to express these quantities mathematically, we introduce some suggestive
notation:

Let V be the volume of the balloon and let r be its radius.

The key thing to remember is that rates of change are derivatives. In this problem, the
volume and the radius are both functions of the time . The rate of increase of the vol-
ume with respect to time is the derivative , and the rate of increase of the radius is

. We can therefore restate the given and the unknown as follows:

Given:

Unknown:
dr
dt

when r ! 25 cm

dV
dt

! 100 cm3#s

dr#dt
dV#dt

t

EXAMPLE 1v

100 cm3#s

100 cm3#s

3.9 Related Rates

According to the Principles of Problem
Solving discussed on page 75, the first step is
to understand the problem. This includes read-
ing the problem carefully, identifying the given
and the unknown, and introducing suitable
notation.

PS
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SECTION 3.9 RELATED RATES 245

In order to connect and , we first relate and by the formula for the
volume of a sphere:

In order to use the given information, we differentiate each side of this equation with
respect to . To differentiate the right side, we need to use the Chain Rule:

Now we solve for the unknown quantity:

If we put and in this equation, we obtain

The radius of the balloon is increasing at the rate of cm!s.

A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder
slides away from the wall at a rate of , how fast is the top of the ladder sliding down
the wall when the bottom of the ladder is 6 ft from the wall? 

SOLUTION We first draw a diagram and label it as in Figure 1. Let feet be the distance
from the bottom of the ladder to the wall and feet the distance from the top of the ladder
to the ground. Note that and are both functions of (time, measured in seconds).

We are given that ft!s and we are asked to find when ft (see
Figure 2). In this problem, the relationship between and is given by the Pythagorean
Theorem:

Differentiating each side with respect to using the Chain Rule, we have

and solving this equation for the desired rate, we obtain

When , the Pythagorean Theorem gives and so, substituting these values
and , we have

The fact that is negative means that the distance from the top of the ladder to
the ground is decreasing at a rate of . In other words, the top of the ladder is sliding
down the wall at a rate of .

A water tank has the shape of an inverted circular cone with base radius 2 m
and height 4 m. If water is being pumped into the tank at a rate of 2 m !min, find the rate
at which the water level is rising when the water is 3 m deep.

3
EXAMPLE 3

dV!dt dr!dt V r

3
4 ft!s

3
4 ft!s

dy!dt

EXAMPLE 2

dy
dt

! !
6
8

"1# ! !
3
4

ft!s

dx!dt ! 1
y ! 8x ! 6

dy
dt

! !
x
y
dx
dt

2x
dx
dt

" 2y
dy
dt

! 0

t

x 2 " y 2 ! 100

yx
x ! 6dy!dtdx!dt ! 1

tyx
y

x

1 ft!s

1!"25## $ 0.0127

dr
dt

!
1

4#"25#2 100 !
1

25#

dV!dt ! 100r ! 25

dr
dt

!
1

4#r 2

dV
dt

dV
dt

!
dV
dr

dr
dt

! 4#r 2 dr
dt

t

V ! 4
3 #r 3

The second stage of problem solving is to
think of a plan for connecting the given and the
unknown.

PS

Notice that, although is constant, 
is not constant.

dV!dt
dr!dt

ground

wall

10
y

x

FIGURE 1

y

x

dy
dt =?

dx
dt =1

FIGURE 2
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246 CHAPTER 3 DIFFERENTIATION RULES

SOLUTION We first sketch the cone and label it as in Figure 3. Let , , and be the vol-
ume of the water, the radius of the surface, and the height of the water at time , where is
measured in minutes.

We are given that m !min and we are asked to find when is 3 m.
The quantities and are related by the equation

but it is very useful to express as a function of alone. In order to eliminate , we use
the similar triangles in Figure 3 to write

and the expression for becomes

Now we can differentiate each side with respect to :

so

Substituting m and m !min, we have

The water level is rising at a rate of .

It is useful to recall some of the problem-solving 
principles from page 75 and adapt them to related rates in light of our experience in 
Examples 1–3:

1. Read the problem carefully.
2. Draw a diagram if possible.
3. Introduce notation. Assign symbols to all quantities that are functions of time.
4. Express the given information and the required rate in terms of derivatives.
5. Write an equation that relates the various quantities of the problem. If necessary, use

the geometry of the situation to eliminate one of the variables by substitution (as in
Example 3).

6. Use the Chain Rule to differentiate both sides of the equation with respect to .
7. Substitute the given information into the resulting equation and solve for the 

unknown rate.

The following examples are further illustrations of the strategy.

V r h

t

Problem Solving Strategy

8!"9!# $ 0.28 m!min

dh
dt

!
4

! "3#2 ! 2 !
8

9!

3dV!dt ! 2h ! 3

dh
dt

!
4

!h 2

dV
dt

dV
dt

!
!

4
h 2 dh

dt

t

V !
1
3

!%h2&2

h !
!

12
h 3

V

r !
h
2

r
h

!
2
4

rhV

V ! 1
3 !r 2h

hV
hdh!dt3dV!dt ! 2

tt

FIGURE 3

2

r

h
4

Look back: What have we learned from 
Examples 1–3 that will help us solve future 
problems?

PS

| WARNING A common error is to 
substitute the given numerical information 
(for quantities that vary with time) too early.
This should be done only after the differenti-
ation. (Step 7 follows Step 6.) For instance, in
Example 3 we dealt with general values of 
until we finally substituted at the last
stage. (If we had put earlier, we would
have gotten , which is clearly
wrong.)

h
h ! 3

h ! 3
dV!dt ! 0
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SECTION 3.9 RELATED RATES 247

Car A is traveling west at and car B is traveling north at 
. Both are headed for the intersection of the two roads. At what rate are 

the cars approaching each other when car A is 0.3 mi and car B is 0.4 mi from the 
intersection?

SOLUTION We draw Figure 4, where is the intersection of the roads. At a given time let
be the distance from car A to , let be the distance from car B to , and let be the

distance between the cars, where , , and are measured in miles.
We are given that mi!h and mi!h. (The derivatives are

negative because and are decreasing.) We are asked to find . The equation that
relates , , and is given by the Pythagorean Theorem:

Differentiating each side with respect to , we have

When mi and mi, the Pythagorean Theorem gives mi, so

The cars are approaching each other at a rate of 78 mi!h.

A man walks along a straight path at a speed of 4 ft!s. A searchlight is 
located on the ground 20 ft from the path and is kept focused on the man. At what rate is
the searchlight rotating when the man is 15 ft from the point on the path closest to the
searchlight?

SOLUTION We draw Figure 5 and let be the distance from the man to the point on the
path closest to the searchlight. We let be the angle between the beam of the searchlight
and the perpendicular to the path.

We are given that ft!s and are asked to find when . The equa-
tion that relates and can be written from Figure 5:

Differentiating each side with respect to , we get

so

!
1

20
cos2! "4# !

1
5

cos2!

d!

dt
!

1
20

cos2!
dx
dt

60 mi!h
v EXAMPLE 4 50 mi!h

EXAMPLE 5v

dx
dt

! 20 sec2!
d!

dt

t

x ! 20 tan !
x

20
! tan !

!x
x ! 15d!!dtdx!dt ! 4

!
x

! " 78 mi!h

dz
dt

!
1

0.5
$0.3"" 50# # 0.4"" 60#%

z ! 0.5y ! 0.4x ! 0.3

dz
dt

!
1
z &x dxdt # y

dy
dt '

2z
dz
dt

! 2x
dx
dt

# 2y
dy
dt

t

z2 ! x 2 # y 2

zyx
dz!dtyx

dy!dt ! " 60dx!dt ! " 50
zyx

zCyCx
t,C

FIGURE 4

C

zy

x

B

A

FIGURE 5

x

20
¨
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248 CHAPTER 3 DIFFERENTIATION RULES

1. If is the volume of a cube with edge length and the cube
expands as time passes, find in terms of .

2. (a) If is the area of a circle with radius and the circle
expands as time passes, find in terms of .

(b) Suppose oil spills from a ruptured tanker and spreads in a
circular pattern. If the radius of the oil spill increases at a
constant rate of , how fast is the area of the spill
increasing when the radius is 30 m?

3. Each side of a square is increasing at a rate of . At what
rate is the area of the square increasing when the area of the
square is ?

4. The length of a rectangle is increasing at a rate of and
its width is increasing at a rate of . When the length is
20 cm and the width is 10 cm, how fast is the area of the rect-
angle increasing?

5. A cylindrical tank with radius 5 m is being filled with water 
at a rate of . How fast is the height of the water
increasing?

6. The radius of a sphere is increasing at a rate of . How
fast is the volume increasing when the diameter is 80 mm?

7. Suppose , where and are functions of .
(a) If , find when .
(b) If , find when .

8. Suppose , where and are functions of .
(a) If , find when and .
(b) If , find when and .

9. If , , and , find
when .

10. A particle is moving along a hyperbola . As it reaches
the point , the -coordinate is decreasing at a rate of

. How fast is the -coordinate of the point changing at
that instant?

11–14
(a) What quantities are given in the problem?
(b) What is the unknown?
(c) Draw a picture of the situation for any time t.
(d) Write an equation that relates the quantities.
(e) Finish solving the problem.

11. A plane flying horizontally at an altitude of 1 mi and a speed of
passes directly over a radar station. Find the rate at500 mi!h

x3 cm!s
y"4, 2#

xy ! 8

"x, y, z# ! "2, 2, 1#
dz!dtdy!dt ! 4dx!dt ! 5x 2 ! y 2 ! z 2 ! 9

y ! 2
3 s5x ! "2dy!dtdx!dt ! 3

y ! 2
3 s5x ! 2dx!dtdy!dt ! 1

3

tyx4x 2 ! 9y 2 ! 36

x ! 12dx!dtdy!dt ! 5
x ! 4dy!dtdx!dt ! 3

tyxy ! s2x ! 1

4 mm!s

3 m3!min

3 cm!s
8 cm!s

16 cm2

6 cm!s

1 m!s

dr!dtdA!dt
rA

dx!dtdV!dt
xV which the distance from the plane to the station is increasing

when it is 2 mi away from the station.

12. If a snowball melts so that its surface area decreases at a rate of
1 cm !min, find the rate at which the diameter decreases when
the diameter is 10 cm.

13. A street light is mounted at the top of a 15-ft-tall pole. A man 
6 ft tall walks away from the pole with a speed of 5 ft!s along
a straight path. How fast is the tip of his shadow moving when
he is 40 ft from the pole?

14. At noon, ship A is 150 km west of ship B. Ship A is sailing east
at 35 km!h and ship B is sailing north at 25 km!h. How fast is
the distance between the ships changing at 4:00 PM?

15. Two cars start moving from the same point. One travels south
at 60 mi!h and the other travels west at 25 mi!h. At what rate
is the distance between the cars increasing two hours later?

16. A spotlight on the ground shines on a wall 12 m away. If a man
2 m tall walks from the spotlight toward the building at a speed
of 1.6 m!s, how fast is the length of his shadow on the build-
ing decreasing when he is 4 m from the building?

17. A man starts walking north at 4 ft!s from a point . Five min-
utes later a woman starts walking south at 5 ft!s from a point
500 ft due east of . At what rate are the people moving apart
15 min after the woman starts walking?

18. A baseball diamond is a square with side 90 ft. A batter hits the
ball and runs toward first base with a speed of 24 ft!s.
(a) At what rate is his distance from second base decreasing

when he is halfway to first base?
(b) At what rate is his distance from third base increasing at

the same moment?

19. The altitude of a triangle is increasing at a rate of 1 cm!min
while the area of the triangle is increasing at a rate of 

90 ft

P

P

2

3.9 Exercises

When , the length of the beam is 25, so and

The searchlight is rotating at a rate of 0.128 rad!s.

x ! 15 cos # ! 4
5

d#

dt
!

1
5 $4

5%2

!
16

125
! 0.128

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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SECTION 3.9 RELATED RATES 249

2 cm !min. At what rate is the base of the triangle changing
when the altitude is 10 cm and the area is ?

20. A boat is pulled into a dock by a rope attached to the bow of
the boat and passing through a pulley on the dock that is 1 m
higher than the bow of the boat. If the rope is pulled in at a rate
of 1 m!s, how fast is the boat approaching the dock when it is
8 m from the dock?

21. At noon, ship A is 100 km west of ship B. Ship A is sailing
south at 35 km!h and ship B is sailing north at 25 km!h. How
fast is the distance between the ships changing at 4:00 PM?

22. A particle moves along the curve . As the par-
ticle passes through the point , its -coordinate increases
at a rate of . How fast is the distance from the par-
ticle to the origin changing at this instant?

23. Water is leaking out of an inverted conical tank at a rate of
10,000 cm !min at the same time that water is being pumped
into the tank at a constant rate. The tank has height 6 m and the
diameter at the top is 4 m. If the water level is rising at a rate
of 20 cm!min when the height of the water is 2 m, find the rate
at which water is being pumped into the tank.

24. A trough is 10 ft long and its ends have the shape of isosceles
triangles that are 3 ft across at the top and have a height of 1 ft.
If the trough is being filled with water at a rate of 12 ft !min,
how fast is the water level rising when the water is 6 inches
deep?

25. A water trough is 10 m long and a cross-section has the shape
of an isosceles trapezoid that is 30 cm wide at the bottom,
80 cm wide at the top, and has height 50 cm. If the trough is
being filled with water at the rate of 0.2 , how fast is the
water level rising when the water is 30 cm deep?

26. A swimming pool is 20 ft wide, 40 ft long, 3 ft deep at the
shallow end, and 9 ft deep at its deepest point. A cross-section
is shown in the figure. If the pool is being filled at a rate of
0.8 , how fast is the water level rising when the depth at
the deepest point is 5 ft?

27. Gravel is being dumped from a conveyor belt at a rate of 
30 , and its coarseness is such that it forms a pile in the
shape of a cone whose base diameter and height are always 

ft3!min

3
6

12 6166

ft3!min

m3!min

3

3

s10 cm!s
x( 1

3, 1)
y ! 2 sin"!x!2#

100 cm2

2 equal. How fast is the height of the pile increasing when the
pile is 10 ft high?

28. A kite 100 ft above the ground moves horizontally at a speed
of 8 ft!s. At what rate is the angle between the string and the
horizontal decreasing when 200 ft of string has been let out?

29. Two sides of a triangle are 4 m and 5 m in length and the angle
between them is increasing at a rate of 0.06 rad!s. Find the rate
at which the area of the triangle is increasing when the angle
between the sides of fixed length is .

30. How fast is the angle between the ladder and the ground
changing in Example 2 when the bottom of the ladder is 6 ft
from the wall?

31. The top of a ladder slides down a vertical wall at a rate of
. At the moment when the bottom of the ladder is 3 m

from the wall, it slides away from the wall at a rate of .
How long is the ladder?

; 32. A faucet is filling a hemispherical basin of diameter 60 cm 
with water at a rate of . Find the rate at which the
water is rising in the basin when it is half full. [Use the follow-
ing facts: 1 L is . The volume of the portion of a 
sphere with radius from the bottom to a height is

, as we will show in Chapter 6.]

33. Boyle’s Law states that when a sample of gas is compressed at
a constant temperature, the pressure and volume satisfy the
equation , where is a constant. Suppose that at a cer-
tain instant the volume is 600 cm , the pressure is 150 kPa, and
the pressure is increasing at a rate of 20 kPa!min. At what rate
is the volume decreasing at this instant?

34. When air expands adiabatically (without gaining or losing
heat), its pressure and volume are related by the equation

, where is a constant. Suppose that at a certain
instant the volume is 400 cm and the pressure is 80 kPa and is
decreasing at a rate of 10 kPa!min. At what rate is the volume
increasing at this instant?

35. If two resistors with resistances and are connected in 
parallel, as in the figure, then the total resistance , measured
in ohms ( ), is given by

If and are increasing at rates of and ,R1 R2 0.3 "!s 0.2 "!s

1
R

!
1
R1

#
1
R2

"
R

R2R1

3
CPV 1.4 ! C

VP

3
CPV ! C

VP

V ! ! (rh 2 $ 1
3h 3)

hr
1000 cm3

2 L!min

0.2 m!s
0.15 m!s

!!3
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250 CHAPTER 3 DIFFERENTIATION RULES

respectively, how fast is changing when and
?

36. Brain weight as a function of body weight in fish has 
been modeled by the power function , where 

and are measured in grams. A model for body weight 
as a function of body length (measured in centimeters) is

. If, over 10 million years, the average length of 
a certain species of fish evolved from 15 cm to 20 cm at a con-
stant rate, how fast was this species’ brain growing when the
average length was 18 cm? 

37. Two sides of a triangle have lengths 12 m and 15 m. The angle
between them is increasing at a rate of . How fast is the
length of the third side increasing when the angle between the
sides of fixed length is 60 ?

38. Two carts, A and B, are connected by a rope 39 ft long that
passes over a pulley (see the figure). The point is on the
floor 12 ft directly beneath and between the carts. Cart A 
is being pulled away from at a speed of 2 ft!s. How fast is 
cart B moving toward at the instant when cart A is 5 ft 
from ?

39. A television camera is positioned 4000 ft from the base of a
rocket launching pad. The angle of elevation of the camera has

R R1 ! 80 !

A B

Q

P

12  ft

Q
Q

Q
P

QP

"

2 "!min

W ! 0.12L2.53
L

WB
B ! 0.007W 2!3

WB

R¡ R™

R2 ! 100 !

to change at the correct rate in order to keep the rocket in sight.
Also, the mechanism for focusing the camera has to take into
account the increasing distance from the camera to the rising
rocket. Let’s assume the rocket rises vertically and its speed is
600 ft!s when it has risen 3000 ft.
(a) How fast is the distance from the television camera to the

rocket changing at that moment?
(b) If the television camera is always kept aimed at the rocket,

how fast is the camera’s angle of elevation changing at that
same moment?

40. A lighthouse is located on a small island 3 km away from the
nearest point on a straight shoreline and its light makes four
revolutions per minute. How fast is the beam of light moving
along the shoreline when it is 1 km from ?

41. A plane flies horizontally at an altitude of and passes
directly over a tracking telescope on the ground. When the
angle of elevation is , this angle is decreasing at a rate of

. How fast is the plane traveling at that time?

42. A Ferris wheel with a radius of is rotating at a rate of one
revolution every 2 minutes. How fast is a rider rising when his
seat is 16 m above ground level?

43. A plane flying with a constant speed of 300 km!h passes over 
a ground radar station at an altitude of 1 km and climbs at an
angle of 30 . At what rate is the distance from the plane to the
radar station increasing a minute later?

44. Two people start from the same point. One walks east at
3 mi!h and the other walks northeast at 2 mi!h. How fast is
the distance between the people changing after 15 minutes?

45. A runner sprints around a circular track of radius 100 m at 
a constant speed of 7 m!s. The runner’s friend is standing 
at a distance 200 m from the center of the track. How fast is 
the distance between the friends changing when the distance
between them is 200 m?

46. The minute hand on a watch is 8 mm long and the hour hand 
is 4 mm long. How fast is the distance between the tips of the
hands changing at one o’clock?

P

P

"

10 m

#!6 rad!min
#!3

5 km

We have seen that a curve lies very close to its tangent line near the point of tangency. In
fact, by zooming in toward a point on the graph of a differentiable function, we noticed that
the graph looks more and more like its tangent line. (See Figure 2 in Section 2.7.) This 
observation is the basis for a method of finding approximate values of functions.

The idea is that it might be easy to calculate a value of a function, but difficult (or
even impossible) to compute nearby values of f. So we settle for the easily computed val-
ues of the linear function L whose graph is the tangent line of f at . (See Figure 1.)

In other words, we use the tangent line at as an approximation to the curve
when x is near a. An equation of this tangent line is

y ! f"a# $ f %"a#"x & a#

y ! f"x#
"a, f"a##

"a, f"a##

f"a#

3.10 Linear Approximations and Differentials

x0

y

{a, f(a)}

y=ƒ

y=L(x)

FIGURE 1
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SECTION 3.10 LINEAR APPROXIMATIONS AND DIFFERENTIALS 251

and the approximation

is called the linear approximation or tangent line approximation of f at a. The linear
function whose graph is this tangent line, that is,

is called the linearization of f at a.

Find the linearization of the function at and use it
to approximate the numbers and . Are these approximations overestimates
or underestimates?

SOLUTION The derivative of is

and so we have and . Putting these values into Equation 2, we see
that the linearization is

The corresponding linear approximation is

(when is near )

In particular, we have

The linear approximation is illustrated in Figure 2. We see that, indeed, the tangent
line approximation is a good approximation to the given function when is near l. We
also see that our approximations are overestimates because the tangent line lies above the
curve.

Of course, a calculator could give us approximations for and , but the
linear approximation gives an approximation over an entire interval.

In the following table we compare the estimates from the linear approximation in 
Example 1 with the true values. Notice from this table, and also from Figure 2, that the tan-
gent line approximation gives good estimates when x is close to 1 but the accuracy of the
approximation deteriorates when x is farther away from 1.

1

s4.05s3.98

x

s4.05 ! 7
4 ! 1.05

4 ! 2.0125ands3.98 ! 7
4 ! 0.98

4 ! 1.995

1xsx ! 3 !
7
4

!
x
4

L"x# ! f "1# ! f ""1#"x # 1# ! 2 ! 1
4 "x # 1# !

7
4

!
x
4

f ""1# ! 1
4f "1# ! 2

f ""x# ! 1
2 "x ! 3## 1$2 !

1
2sx ! 3

f "x# ! "x ! 3#1$2

EXAMPLE 1v
s4.05s3.98

a ! 1f "x# ! sx ! 3

L"x# ! f "a# ! f ""a#"x # a#2

f "x# ! f "a# ! f ""a#"x # a#1

y=    x+3

_3 0 x

y

1

(1, 2)
y=   + x

4
7
4

œ„„„„

FIGURE 2

x From Actual value

0.9 1.975 1.97484176 . . .
0.98 1.995 1.99499373 . . .
1 2 2.00000000 . . .
1.05 2.0125 2.01246117 . . .
1.1 2.025 2.02484567 . . .
2 2.25 2.23606797 . . .
3 2.5 2.44948974 . . .s6

s5
s4.1
s4.05
s4
s3.98
s3.9

L"x#
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252 CHAPTER 3 DIFFERENTIATION RULES

How good is the approximation that we obtained in Example 1? The next example shows
that by using a graphing calculator or computer we can determine an interval throughout
which a linear approximation provides a specified accuracy.

For what values of is the linear approximation

accurate to within 0.5? What about accuracy to within 0.1?

SOLUTION Accuracy to within 0.5 means that the functions should differ by less 
than 0.5: 

Equivalently, we could write

This says that the linear approximation should lie between the curves obtained by shift-
ing the curve upward and downward by an amount 0.5. Figure 3 shows 
the tangent line intersecting the upper curve at 
and . Zooming in and using the cursor, we estimate that the -coordinate of is about 

and the -coordinate of is about 8.66. Thus we see from the graph that the
approximation

is accurate to within 0.5 when . (We have rounded to be safe.)
Similarly, from Figure 4 we see that the approximation is accurate to within 0.1 when

.

Applications to Physics
Linear approximations are often used in physics. In analyzing the consequences of an equa-
tion, a physicist sometimes needs to simplify a function by replacing it with its linear 
approximation. For instance, in deriving a formula for the period of a pendulum, physics
textbooks obtain the expression for tangential acceleration and then replace

by with the remark that is very close to if is not too large. [See, for exam-
ple, Physics: Calculus, 2d ed., by Eugene Hecht (Pacific Grove, CA, 2000), p. 431.] You can
verify that the linearization of the function at a ! 0 is and so the lin-
ear approximation at 0 is

(see Exercise 42). So, in effect, the derivation of the formula for the period of a pendulum
uses the tangent line approximation for the sine function.

Another example occurs in the theory of optics, where light rays that arrive at shallow
angles relative to the optical axis are called paraxial rays. In paraxial (or Gaussian) optics,
both and are replaced by their linearizations. In other words, the linear 
approximations

and    

sin !

sin ! ! ! cos ! ! 1

cos !

sin x ! x

L"x# ! xf "x# ! sin x

!!sin !!sin !
aT ! "t sin !

"1.1 # x # 3.9

"2.6 # x # 8.6

sx $ 3 !
7
4

$
x
4

Qx"2.66
PxQ

Py ! sx $ 3 $ 0.5y ! "7 $ x#$4
y ! sx $ 3

sx $ 3 " 0.5 #
7
4

$
x
4

# sx $ 3 $ 0.5

EXAMPLE 2

% sx $ 3 " &7
4

$
x
4' % # 0.5

sx $ 3 !
7
4

$
x
4

x

4.3

_1

_4 10

y=   x+3-0.5œ„„„„

Q

P
L(x)

FIGURE 3

y=   x+3+0.5œ„„„„

3

1
_2

y=   x+3-0.1œ„„„„

Q

P

5

y=   x+3+0.1œ„„„„

FIGURE 4
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SECTION 3.10 LINEAR APPROXIMATIONS AND DIFFERENTIALS 253

are used because is close to 0. The results of calculations made with these approximations
became the basic theoretical tool used to design lenses. [See Optics, 4th ed., by Eugene
Hecht (San Francisco, 2002), p. 154.]

In Section 11.11 we will present several other applications of the idea of linear approxi-
mations to physics and engineering.

Differentials
The ideas behind linear approximations are sometimes formulated in the terminology and
notation of differentials. If , where is a differentiable function, then the differ-
ential is an independent variable; that is, can be given the value of any real number.
The differential is then defined in terms of by the equation

So is a dependent variable; it depends on the values of and . If is given a specific
value and is taken to be some specific number in the domain of , then the numerical
value of is determined.

The geometric meaning of differentials is shown in Figure 5. Let and
be points on the graph of and let . The corresponding

change in is

The slope of the tangent line is the derivative . Thus the directed distance from S
to R is . Therefore represents the amount that the tangent line rises or falls
(the change in the linearization), whereas represents the amount that the curve
rises or falls when changes by an amount .

Compare the values of and if and 
changes (a) from 2 to 2.05 and (b) from 2 to 2.01.

SOLUTION
(a) We have

In general,

When and , this becomes

(b)

When ,

dy ! !3"2#2 ! 2"2# " 2$0.01 ! 0.14

EXAMPLE 3

dx ! #x ! 0.01

#y ! f "2.01# " f "2# ! 0.140701

f "2.01# ! "2.01#3 ! "2.01#2 " 2"2.01# ! 1 ! 9.140701

dy ! !3"2#2 ! 2"2# " 2$0.05 ! 0.7

dx ! #x ! 0.05x ! 2

dy ! f $"x# dx ! "3x 2 ! 2x " 2# dx

#y ! f "2.05# " f "2# ! 0.717625

f "2.05# ! "2.05#3 ! "2.05#2 " 2"2.05# ! 1 ! 9.717625

f "2# ! 23 ! 22 " 2"2# ! 1 ! 9

x
y ! f "x# ! x 3 ! x 2 " 2x ! 1dy#y

dxx
y ! f "x##y

dyf $"x# dx ! dy
f $"x#PR

#y ! f "x ! #x# " f "x#

y
dx ! #xfQ"x ! #x, f "x ! #x##

P"x, f "x##
dy

fx
dxdxxdy

dy ! f $"x# dx3

dxdy
dxdx
fy ! f "x#

%

If , we can divide both sides of 
Equation 3 by to obtain

We have seen similar equations before, but
now the left side can genuinely be interpreted
as a ratio of differentials.

dy
dx

! f $"x#

dx
dx " 0

R

0 x

y

Îy

x

P

Q

dx=Îx

x+Îx

y=ƒ

S

dy

FIGURE 5

FIGURE 6 

y=˛+≈-2x+1

(2, 9)

dy Îy

Figure 6 shows the function in Example 3 and 
a comparison of and when . The
viewing rectangle is by .!6, 18$!1.8, 2.5$

a ! 2#ydy
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254 CHAPTER 3 DIFFERENTIATION RULES

Notice that the approximation becomes better as becomes smaller in 
Example 3. Notice also that was easier to compute than . For more complicated func-
tions it may be impossible to compute exactly. In such cases the approximation by dif-
ferentials is especially useful.

In the notation of differentials, the linear approximation can be written as

For instance, for the function in Example 1, we have

If a ! 1 and , then

and

just as we found in Example 1.
Our final example illustrates the use of differentials in estimating the errors that occur 

because of approximate measurements.

The radius of a sphere was measured and found to be 21 cm with a pos -
sible error in measurement of at most 0.05 cm. What is the maximum error in using this
value of the radius to compute the volume of the sphere?

SOLUTION If the radius of the sphere is , then its volume is . If the error in the
measured value of is denoted by , then the corresponding error in the calcu-
lated value of is , which can be approximated by the differential

When and , this becomes

The maximum error in the calculated volume is about 277 cm .

NOTE Although the possible error in Example 4 may appear to be rather large, a 
better picture of the error is given by the relative error, which is computed by dividing the
error by the total volume:

Thus the relative error in the volume is about three times the relative error in the radius. 
In Example 4 the relative error in the radius is approximately
and it produces a relative error of about 0.007 in the volume. The errors could also be 
expressed as percentage errors of in the radius and in the volume.

1

!ydy
!x!y ! dy

EXAMPLE 4v

!y

s4.05 ! f"1.05# ! f"1# " dy ! 2.0125

dy !
0.05

2s1 " 3
! 0.0125

dx ! !x ! 0.05

dy ! f #"x# dx !
dx

2sx " 3

f"x# ! sx " 3

f"a " dx# ! f"a# " dy

0.7%0.24%

dr$r ! 0.05$21 ! 0.0024

!V
V

!
dV
V

!
4$r 2dr

4
3 $r 3 ! 3

dr
r

3

dV ! 4$"21#20.05 ! 277

dr ! 0.05r ! 21

dV ! 4$r 2dr

!VV
dr ! !rr

V ! 4
3 $r 3r
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SECTION 3.10 LINEAR APPROXIMATIONS AND DIFFERENTIALS 255

1–4 Find the linearization of the function at .

1. ,  2. ,  

3. ,  4. ,  

; 5. Find the linear approximation of the function
at and use it to approximate the numbers and

. Illustrate by graphing and the tangent line.

; 6. Find the linear approximation of the function
at and use it to approximate the numbers and

. Illustrate by graphing and the tangent line.

; 7–10 Verify the given linear approximation at . Then deter-
mine the values of for which the linear approximation is accu-
rate to within 0.1.

7. 8.

9. 10.

11–14 Find the differential of each function.

11. (a) (b)

12. (a) (b)

13. (a) (b)

14. (a) (b)

15–18 (a) Find the differential and (b) evaluate for the
given values of and .

15. ,  ,  

16. ,  ,  

17. ,  ,  

18. ,  ,  

19–22 Compute and for the given values of and .
Then sketch a diagram like Figure 5 showing the line segments
with lengths , , and .

19. ,  ,  

20. ,  ,  

21. ,  ,  

22. ,  ,  

23–28 Use a linear approximation (or differentials) to estimate the
given number.

23. 24.!1.999"4 e!0.015

"x ! 0.5x ! 0y ! e x
"x ! 1x ! 4y ! 2#x

"x ! 1x ! 1y ! sx
"x ! !0.4x ! 2y ! 2x ! x 2

"ydydx

dx ! "xxdy"y

dx ! 0.05x ! 2y !
x # 1
x ! 1

dx ! !0.1x ! 1y ! s3 # x 2

dx ! !0.02x ! 1
3y ! cos $x

dx ! 0.1x ! 0y ! e x #10

dxx
dydy

y ! s1 # ln zy ! e tan$ t

y !
1 ! v 2

1 # v 2y ! tan st

y ! e!u cos uy ! s#!1 # 2s"

y ! lns1 # t 2y ! x 2 sin 2x

$ 1 # 1
2 x e xcos x $ 1 # xs4 1 # 2x

!1 # x"!3 $ 1 ! 3xln!1 # x" $ x

x
a ! 0

ts3 1.1
s3 0.95a ! 0

t!x" ! s3 1 # x

fs0.99
s0.9a ! 0

f !x" ! s1 ! x

a ! $#6

a ! 16f !x" ! x 3#4a ! 4f !x" ! sx
f !x" ! sin xa ! !1f !x" ! x 4 # 3x 2

aL!x" 25. 26.

27. 28.

29–31 Explain, in terms of linear approximations or differentials,
why the approximation is reasonable.

29. 30.

31.

32. Let

and

(a) Find the linearizations of , , and at . What do
you notice? How do you explain what happened?

; (b) Graph , , and and their linear approximations. For
which function is the linear approximation best? For
which is it worst? Explain.

33. The edge of a cube was found to be 30 cm with a possible
error in measurement of 0.1 cm. Use differentials to estimate
the maximum possible error, relative error, and percentage
error in computing (a) the volume of the cube and (b) the sur-
face area of the cube.

34. The radius of a circular disk is given as 24 cm with a maxi-
 mum error in measurement of 0.2 cm.
(a) Use differentials to estimate the maximum error in the

calculated area of the disk.
(b) What is the relative error? What is the percentage error?

35. The circumference of a sphere was measured to be 84 cm
with a possible error of 0.5 cm.
(a) Use differentials to estimate the maximum error in the 

calculated surface area. What is the relative error?
(b) Use differentials to estimate the maximum error in the 

calculated volume. What is the relative error?

36. Use differentials to estimate the amount of paint needed to
apply a coat of paint 0.05 cm thick to a hemispherical dome
with diameter 50 m.

37. (a) Use differentials to find a formula for the approximate
volume of a thin cylindrical shell with height , inner
radius , and thickness .

(b) What is the error involved in using the formula from
part (a)?

38. One side of a right triangle is known to be 20 cm long and
the opposite angle is measured as , with a possible error 
of .
(a) Use differentials to estimate the error in computing the

length of the hypotenuse.
(b) What is the percentage error?

s3 1001 1#4.002

% 1&
30&

"rr
h

htf

a ! 0htf

h!x" ! 1 # ln!1 ! 2x"

t!x" ! e!2xf !x" ! !x ! 1"2

ln 1.05 $ 0.05

!1.01"6 $ 1.06sec 0.08 $ 1

s99.8tan 44&

3.10 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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256 CHAPTER 3 DIFFERENTIATION RULES

39. If a current passes through a resistor with resistance , Ohm’s
Law states that the voltage drop is . If is constant and

is measured with a certain error, use differentials to show
that the relative error in calculating is approximately the same
(in magnitude) as the relative error in .

40. When blood flows along a blood vessel, the flux (the volume
of blood per unit time that flows past a given point) is propor-
tional to the fourth power of the radius of the blood vessel:

(This is known as Poiseuille’s Law; we will show why it 
is true in Section 8.4.) A partially clogged artery can be
expanded by an operation called angioplasty, in which a 
balloon-tipped catheter is inflated inside the artery in order 
to widen it and restore the normal blood flow.

Show that the relative change in is about four times the
relative change in . How will a 5% increase in the radius
affect the flow of blood?

41. Establish the following rules for working with differentials
(where denotes a constant and and are functions of ). 
(a) (b)
(c) (d)

(e) (f )

42. On page 431 of Physics: Calculus, 2d ed., by Eugene Hecht
(Pacific Grove, CA, 2000), in the course of deriving the
formula for the period of a pendulum of length
L, the author obtains the equation for the tangen-aT ! !t sin "

V ! RI V
I R

T ! 2#sL!t

d"x n # ! nx n!1 dxd$u
v% !

v du ! u dv
v2

d"uv# ! u dv $ v dud"u $ v# ! du $ dv

d"cu# ! c dudc ! 0
xvuc

R
F

F ! kR 4

R

F

R
I

R

tial acceleration of the bob of the pendulum. He then says, “for
small angles, the value of in radians is very nearly the value
of ; they differ by less than 2% out to about 20°.”
(a) Verify the linear approximation at 0 for the sine function:

; (b) Use a graphing device to determine the values of for
which and differ by less than 2%. Then verify
Hecht’s statement by converting from radians to degrees.

43. Suppose that the only information we have about a function
is that and the graph of its derivative is as shown.
(a) Use a linear approximation to estimate and .
(b) Are your estimates in part (a) too large or too small?

Explain.

44. Suppose that we don’t have a formula for but we know
that and for all .
(a) Use a linear approximation to estimate 

and .
(b) Are your estimates in part (a) too large or too small?

Explain.

"
sin "

f "1.1#f "0.9#
f "1# ! 5

f

xsin x
x

sin x & x

t"2.05#
t"1.95#

xt%"x# ! sx 2 $ 5t"2# ! !4
t"x#

y

x0 1

y=fª(x)

1

L A B O R AT O R Y  P R O J E C T ; TAYLOR POLYNOMIALS

The tangent line approximation is the best first-degree (linear) approximation to near
because and have the same rate of change (derivative) at . For a better approxi-

mation than a linear one, let’s try a second-degree (quadratic) approximation . In other words,
we approximate a curve by a parabola instead of by a straight line. To make sure that the approxi-
mation is a good one, we stipulate the following:

(i) ( and should have the same value at .)

(ii) ( and should have the same rate of change at .)

(iii) (The slopes of and should change at the same rate at .)

1. Find the quadratic approximation to the function that
satisfies conditions (i), (ii), and (iii) with . Graph , , and the linear approximation

on a common screen. Comment on how well the functions and approximate .

2. Determine the values of for which the quadratic approximation in Problem 1 is
accurate to within 0.1. [Hint: Graph , and on a
common screen.]

y ! P"x# y ! cos x ! 0.1, y ! cos x $ 0.1
x f "x# & P"x#

L"x# ! 1 P L f
a ! 0 P f

f "x# ! cos xP"x# ! A $ Bx $ Cx 2

afPP &"a# ! f &"a#
afPP%"a# ! f %"a#

afPP"a# ! f "a#

P"x#
aL"x#f "x#x ! a

f "x#L"x#

; Graphing calculator or computer required
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SECTION 3.11 HYPERBOLIC FUNCTIONS 257

3. To approximate a function by a quadratic function near a number , it is best to write
in the form

Show that the quadratic function that satisfies conditions (i), (ii), and (iii) is

4. Find the quadratic approximation to near . Graph , the quadratic
approximation, and the linear approximation from Example 2 in Section 3.10 on a common
screen. What do you conclude?

5. Instead of being satisfied with a linear or quadratic approximation to near , let’s
try to find better approximations with higher-degree polynomials. We look for an th-degree
polynomial

such that and its first derivatives have the same values at as and its first 
derivatives. By differentiating repeatedly and setting , show that these conditions are
satisfied if , and in general

where . The resulting polynomial

is called the th-degree Taylor polynomial of centered at .

6. Find the 8th-degree Taylor polynomial centered at for the function .
Graph together with the Taylor polynomials in the viewing rectangle [!5, 5]
by [!1.4, 1.4] and comment on how well they approximate .f

T2, T4, T6, T8f
f !x" ! cos xa ! 0

afn

Tn!x" ! f !a" " f #!a"!x ! a" "
f $!a"
2!

!x ! a"2 " % % % "
f !n"!a"
n!

!x ! a"n

k! ! 1 ! 2 ! 3 ! 4 ! % % % ! k

ck !
f !k"!a"
k!

c0 ! f !a", c1 ! f #!a", c2 ! 1
2 f $!a"

x ! a
nfx ! anTn

Tn!x" ! c0 " c1!x ! a" " c2!x ! a"2 " c3!x ! a"3 " % % % " cn!x ! a"n

n
x ! af !x"

fa ! 1f !x" ! sx " 3

P!x" ! f !a" " f #!a"!x ! a" " 1
2 f $!a"!x ! a"2

P!x" ! A " B!x ! a" " C!x ! a"2

PaPf

Certain even and odd combinations of the exponential functions and arise so fre-
quently in mathematics and its applications that they deserve to be given special names. 
In many ways they are analogous to the trigonometric functions, and they have the same 
relationship to the hyperbola that the trigonometric functions have to the circle. For this
reason they are collectively called hyperbolic functions and individually called hyperbolic
sine, hyperbolic cosine, and so on. 

Definition of the Hyperbolic Functions

coth x !
cosh x
sinh x

tanh x !
sinh x
cosh x

sech x !
1

cosh x
cosh x !

ex " e!x

2

csch x !
1

sinh x
sinh x !

ex ! e!x

2

e!xe x

3.11 Hyperbolic Functions
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258 CHAPTER 3 DIFFERENTIATION RULES

The graphs of hyperbolic sine and cosine can be sketched using graphical addition as in
Figures 1 and 2.

Note that has domain and range , while has domain and range . 
The graph of is shown in Figure 3. It has the horizontal asymptotes . (See 
Exercise 23.)

Some of the mathematical uses of hyperbolic functions will be seen in Chapter 7. 
Applications to science and engineering occur whenever an entity such as light, velocity,
electricity, or radioactivity is gradually absorbed or extinguished, for the decay can be 
represented by hyperbolic functions. The most famous application is the use of hyperbolic
cosine to describe the shape of a hanging wire. It can be proved that if a heavy flexible cable
(such as a telephone or power line) is suspended between two points at the same height, then
it takes the shape of a curve with equation called a catenary (see Fig-
ure 4). (The Latin word catena means “chain.”)

Another application of hyperbolic functions occurs in the description of ocean waves:
The velocity of a water wave with length moving across a body of water with depth is
modeled by the function

where is the acceleration due to gravity. (See Figure 5 and Exercise 49.)
The hyperbolic functions satisfy a number of identities that are similar to well-known

trigonometric identities. We list some of them here and leave most of the proofs to the 
exercises.

Hyperbolic Identities

cosh!x ! y" ! cosh x cosh y ! sinh x sinh y

sinh!x ! y" ! sinh x cosh y ! cosh x sinh y

1 " tanh2x ! sech2xcosh2x " sinh2x ! 1

cosh!"x" ! cosh xsinh!"x" ! "sinh x

t

v ! # tL
2#

tanh$2#d
L %

dL

y ! c ! a cosh!x&a"

y ! $ 1tanh
'1, %"!cosh!!sinh

FIGURE 3 
y=tanh x

y

0 x

y=_1

y=1

FIGURE 1 
y=sinh x=   ´-   e–®1

2
1
2

1
2y=    ́

y=_     e–®1
2

y=sinh x

0

y

x

FIGURE 2 
y=cosh x=   ´+   e–®1

2
1
2

y=    e–®1
2

1
2y=    ́

y=cosh x

1

0

y

x

FIGURE 4
A catenary y=c+a cosh(x/a)

y

0 x

L
d

FIGURE 5
Idealized ocean wave 
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SECTION 3.11 HYPERBOLIC FUNCTIONS 259

Prove (a) and (b) .

SOLUTION

(a)

(b) We start with the identity proved in part (a):

If we divide both sides by , we get

or

The identity proved in Example 1(a) gives a clue to the reason for the name “hyperbolic”
functions:

If is any real number, then the point lies on the unit circle
because . In fact, can be interpreted as the radian measure of 
in Figure 6. For this reason the trigonometric functions are sometimes called circular
functions.

Likewise, if is any real number, then the point lies on the right branch
of the hyperbola because and . This time,
does not represent the measure of an angle. However, it turns out that represents twice the
area of the shaded hyperbolic sector in Figure 7, just as in the trigonometric case repre-
sents twice the area of the shaded circular sector in Figure 6.

The derivatives of the hyperbolic functions are easily computed. For example,

We list the differentiation formulas for the hyperbolic functions as Table 1. The remaining
proofs are left as exercises. Note the analogy with the differentiation formulas for trigono-
metric functions, but beware that the signs are different in some cases.

Derivatives of Hyperbolic Functions1

EXAMPLE 1v

d
dx

!tanh x" ! sech2x
d
dx

!coth x" ! !csch2x

d
dx

!cosh x" ! sinh x
d
dx

!sech x" ! !sech x tanh x

d
dx

!sinh x" ! cosh x
d
dx

!csch x" ! !csch x coth x

d
dx

!sinh x" !
d
dx # ex ! e!x

2 $ !
ex " e!x

2
! cosh x

t
t

tcosh t # 1cosh2t ! sinh2t ! 1x 2 ! y 2 ! 1
P!cosh t, sinh t"t

!POQtcos2t " sin2t ! 1
x 2 " y 2 ! 1P!cos t, sin t"t

1 ! tanh2x ! sech2x

1 !
sinh2x
cosh2x

!
1

cosh2x

cosh2x

cosh2x ! sinh2x ! 1

!
4
4

! 1!
e 2x " 2 " e!2x

4
!

e 2x ! 2 " e!2x

4

cosh2x ! sinh2x ! # ex " e!x

2 $2

! # ex ! e!x

2 $2

1 ! tanh2x ! sech2xcosh2x ! sinh2x ! 1

FIGURE 7

0

y

x

≈-¥=1

P(cosh t, sinh t)

FIGURE 6 

O

y

x

P(cos t, sin t)

≈+¥=1

Q

©
 2

00
6 

Ge
tty

 Im
ag

es

The Gateway Arch in St. Louis was 
designed using a hyperbolic cosine function 
(Exercise 48).
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260 CHAPTER 3 DIFFERENTIATION RULES

Any of these differentiation rules can be combined with the Chain Rule. For
instance,

Inverse Hyperbolic Functions
You can see from Figures 1 and 3 that and are one-to-one functions and so they
have inverse functions denoted by and . Figure 2 shows that is not one-
to-one, but when restricted to the domain it becomes one-to-one. The inverse hyper-
bolic cosine function is defined as the inverse of this restricted function.

The remaining inverse hyperbolic functions are defined similarly (see Exercise 28).
We can sketch the graphs of , , and in Figures 8, 9, and 10 by using

Figures 1, 2, and 3.

Since the hyperbolic functions are defined in terms of exponential functions, it’s not 
surprising to learn that the inverse hyperbolic functions can be expressed in terms of loga-
rithms. In particular, we have:

Show that .

SOLUTION Let . Then

x ! sinh y !
ey ! e!y

2

EXAMPLE 3

5

4

3

2

EXAMPLE 2

y ! sinh!1x

sinh!1x ! ln(x " sx 2 " 1)

tanh!1x ! 1
2 ln!1 " x

1 ! x" !1 # x # 1

cosh!1x ! ln(x " sx 2 ! 1) x $ 1

sinh!1x ! ln(x " sx 2 " 1) x ! !

FIGURE 8 y=sinh–! x
domain=R range=R

0

y

x

FIGURE 9 y=cosh–! x
domain=[1, `}    range=[0, }̀

0

y

x1

FIGURE 10 y=tanh–! x
domain=(_1, 1)    range=R

0

y

x1_1

tanh!1cosh!1sinh!1

y ! tanh!1x &? tanh y ! x

y ! cosh!1x &? cosh y ! x and y $ 0

y ! sinh!1x &? sinh y ! x

#0, %$
coshtanh!1sinh!1

tanhsinh

d
dx

(cosh sx ) ! sinh sx "
d
dx

sx !
sinh sx

2sx

Formula 3 is proved in Example 3. The 
proofs of Formulas 4 and 5 are requested in
Exercises 26 and 27.
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SECTION 3.11 HYPERBOLIC FUNCTIONS 261

so

or, multiplying by ,

This is really a quadratic equation in :

Solving by the quadratic formula, we get

Note that , but (because ). Thus the minus sign is
inadmissible and we have

Therefore

(See Exercise 25 for another method.)

Derivatives of Inverse Hyperbolic Functions

The inverse hyperbolic functions are all differentiable because the hyperbolic functions
are differentiable. The formulas in Table 6 can be proved either by the method for inverse
functions or by differentiating Formulas 3, 4, and 5.

Prove that .

SOLUTION 1 Let . Then . If we differentiate this equation implicitly
with respect to , we get

Since and , we have , so

EXAMPLE 4v

6

dy
dx

!
1

cosh y
!

1
s1 ! sinh2y

!
1

s1 ! x 2

cosh y ! s1 ! sinh2ycosh y " 0cosh2y # sinh2y ! 1

cosh y
dy
dx

! 1

x
sinh y ! xy ! sinh#1x

d
dx

!sinh#1x" !
1

s1 ! x 2

d
dx

!tanh#1x" !
1

1 # x 2

d
dx

!coth#1x" !
1

1 # x 2

d
dx

!cosh#1x" !
1

sx 2 # 1
d
dx

!sech#1x" ! #
1

xs1 # x 2

d
dx

!sinh#1x" !
1

s1 ! x 2

d
dx

!csch#1x" ! #
1

# x #sx 2 ! 1

y ! ln!ey " ! ln(x ! sx 2 ! 1)

ey ! x ! sx 2 ! 1

x $ sx 2 ! 1x # sx 2 ! 1 $ 0ey % 0

ey !
2x & s4x 2 ! 4

2
! x & sx 2 ! 1

!ey"2 # 2x!ey" # 1 ! 0

ey
e 2y # 2xey # 1 ! 0

ey

ey # 2x # e#y ! 0

Notice that the formulas for the derivatives of
and appear to be identical. But

the domains of these functions have no numbers
in common: is defined for ,
whereas is defined for # x # % 1.coth#1x

# x # $ 1tanh#1x

coth#1xtanh#1x
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262 CHAPTER 3 DIFFERENTIATION RULES

1–6 Find the numerical value of each expression.

1. (a) (b)

2. (a) (b)

3. (a) (b)

4. (a) (b)

5. (a) (b)

6. (a) (b)

7–19 Prove the identity.

7.
(This shows that is an odd function.)

8.
(This shows that is an even function.)

9.

10.

11.

12. cosh!x ! y" ! cosh x cosh y ! sinh x sinh y

sinh!x ! y" ! sinh x cosh y ! cosh x sinh y

cosh x " sinh x ! e"x

cosh x ! sinh x ! e x
cosh

cosh!"x" ! cosh x

sinh
sinh!"x" ! "sinh x

sinh"1 1sinh 1

cosh"1 1sech 0

cosh!ln 3"cosh 3

sinh 2sinh!ln 2"
tanh 1tanh 0

cosh 0sinh 0

13.

14.

15.

16.

17.

18.

19.
( any real number)

20. If , find the values of the other hyperbolic functions
at .

21. If and , find the values of the other hyperbolic
functions at .

22. (a) Use the graphs of , , and in Figures 1–3 to
draw the graphs of , , and .cothsechcsch

tanhcoshsinh

x
x # 0cosh x ! 5

3

x
tanh x ! 12

13

n
!cosh x ! sinh x"n ! cosh nx ! sinh nx

1 ! tanh x
1 " tanh x

! e 2x

tanh!ln x" !
x 2 " 1
x 2 ! 1

cosh 2x ! cosh2x ! sinh2x

sinh 2x ! 2 sinh x cosh x

tanh!x ! y" !
tanh x ! tanh y

1 ! tanh x tanh y

coth2x " 1 ! csch2x

3.11 Exercises

SOLUTION 2 From Equation 3 (proved in Example 3), we have

Find .

SOLUTION Using Table 6 and the Chain Rule, we have

EXAMPLE 5v

!
1

1 " sin2x
cos x !

cos x
cos2x

! sec x

d
dx

#tanh"1!sin x"$ !
1

1 " !sin x"2

d
dx

!sin x"

d
dx

#tanh"1!sin x"$

!
1

sx 2 ! 1

!
sx 2 ! 1 ! x

(x ! sx 2 ! 1)sx 2 ! 1

!
1

x ! sx 2 ! 1 %1 !
x

sx 2 ! 1&
!

1
x ! sx 2 ! 1

d
dx

(x ! sx 2 ! 1)

d
dx

!sinh"1x" !
d
dx

ln(x ! sx 2 ! 1)

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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SECTION 3.11 HYPERBOLIC FUNCTIONS 263

; (b) Check the graphs that you sketched in part (a) by using a
graphing device to produce them.

23. Use the definitions of the hyperbolic functions to find each of
the following limits.
(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i)

24. Prove the formulas given in Table 1 for the derivatives of the
functions (a) , (b) , (c) , (d) , and (e) .

25. Give an alternative solution to Example 3 by letting
and then using Exercise 9 and Example 1(a) 

with replaced by .

26. Prove Equation 4.

27. Prove Equation 5 using (a) the method of Example 3 and 
(b) Exercise 18 with replaced by .

28. For each of the following functions (i) give a definition like
those in , (ii) sketch the graph, and (iii) find a formula
similar to Equation 3.
(a) (b) (c)

29. Prove the formulas given in Table 6 for the derivatives of the
following functions.
(a) (b) (c) 
(d) (e) 

30–45 Find the derivative. Simplify where possible.

30. 31.

32. 33.

34. 35.

36. 37.

38. 39.

40. 41.

42.

43.

44.

45.

46. Show that 

47. Show that .

2

d
dx

arctan!tanh x" ! sech 2x

! 1
2ex#2d

dx$ 1 ! tanh x
1 " tanh x

y ! coth"1!sec x"

y ! sech"1!e"x"

y ! x sinh"1!x#3" " s9 ! x 2

y ! x tanh"1x ! ln s1 " x 2

y ! cosh"1sxy ! sinh"1!tan x"

G!x" !
1 " cosh x
1 ! cosh x

y ! sinh!cosh x"

f !t" ! sech2!e t"f !t" ! csch t !1 " ln csch t"

y ! e cosh 3xy ! x coth!1 ! x 2"

h!x" ! ln!cosh x"t!x" ! cosh!ln x"

f !x" ! x sinh x " cosh xf !x" ! tanh!1 ! e 2x"

coth"1sech"1
csch"1tanh"1cosh"1

coth"1sech"1csch"1

yx

yx
y ! sinh"1x

cothsechcschtanhcosh

lim
xl"#

csch x

lim
xl0"

coth xlim
xl0!

coth x

lim
xl #

coth xlim
xl #

sech x

lim
xl"#

sinh xlim
xl #

sinh x

lim
xl"#

tanh xlim
xl #

tanh x

48. The Gateway Arch in St. Louis was designed by Eero
Saarinen and was constructed using the equation

for the central curve of the arch, where and are measured
in meters and .

; (a) Graph the central curve.
(b) What is the height of the arch at its center?
(c) At what points is the height 100 m?
(d) What is the slope of the arch at the points in part (c)?

49. If a water wave with length moves with velocity in a
body of water with depth , then

where is the acceleration due to gravity. (See Figure 5.)
Explain why the approximation

is appropriate in deep water.

; 50. A flexible cable always hangs in the shape of a catenary
, where and are constants and

(see Figure 4 and Exercise 52). Graph several members of
the family of functions . How does the graph
change as varies?

51. A telephone line hangs between two poles 14 m apart in the
shape of the catenary , where and

are measured in meters.
(a) Find the slope of this curve where it meets the right pole.
(b) Find the angle between the line and the pole.

52. Using principles from physics it can be shown that when a
cable is hung between two poles, it takes the shape of a curve

that satisfies the differential equation 

where is the linear density of the cable, is the acceleration
due to gravity, is the tension in the cable at its lowest point,
and the coordinate system is chosen appropriately. Verify that
the function

is a solution of this differential equation.

y ! f !x" !
T
$t cosh%$tx

T &

T
t$

d 2y
dx 2 !

$t
T $1 ! %dydx&2

y ! f !x"

y

0 x_7 7

5
¨

%

y
xy ! 20 cosh!x#20" " 15

a
y ! a cosh!x#a"

a & 0acy ! c ! a cosh!x#a"

v ' $ tL
2'

t

v ! $ tL
2'

tanh%2'd
L &

d
vL

( x ( ( 91.20
yx

y ! 211.49 " 20.96 cosh 0.03291765x

4
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264 CHAPTER 3 DIFFERENTIATION RULES

53. A cable with linear density is strung from the tops
of two poles that are 200 m apart.
(a) Use Exercise 52 to find the tension so that the cable is 

60 m above the ground at its lowest point. How tall are 
the poles?

(b) If the tension is doubled, what is the new low point of the
cable? How tall are the poles now?

54. Evaluate .

55. (a) Show that any function of the form

satisfies the differential equation .
(b) Find such that , , 

and .y!!0" ! 6
y!0" ! " 4y# ! 9yy ! y!x"
y# ! m 2y

y ! A sinh mx $ B cosh mx

lim
xl %

sinh x
e x

T

& ! 2 kg#m 56. If , show that .

57. At what point of the curve does the tangent have
slope 1?

; 58. Investigate the family of functions

where is a positive integer. Describe what happens to the
graph of when becomes large.

59. Show that if and , then there exist numbers 
and such that equals either or

. In other words, almost every function of the
form is a shifted and stretched hyperbolic
sine or cosine function.

f !x" ! aex $ be" x
' cosh!x $ ("

' sinh!x $ ("ae x $ be" x(
'b " 0a " 0

nfn
n

fn!x" ! tanh!n sin x"

y ! cosh x

sec ) ! cosh xx ! ln!sec ) $ tan )"

1. State each differentiation rule both in symbols and in words.
(a) The Power Rule (b) The Constant Multiple Rule
(c) The Sum Rule (d) The Difference Rule
(e) The Product Rule (f ) The Quotient Rule
(g) The Chain Rule

2. State the derivative of each function.
(a) (b) (c)
(d) (e) (f )
(g) (h) (i)
( j) (k) (l)
(m) (n) (o)
(p) (q) (r)
(s) (t)

3. (a) How is the number defined?
(b) Express as a limit.
(c) Why is the natural exponential function used more

often in calculus than the other exponential functions ?y ! ax
y ! e x

y ! tanh" 1xy ! cosh" 1x
y ! sinh" 1xy ! tanh xy ! cosh x
y ! sinh x

e
e

y ! tan" 1xy ! cos" 1x
y ! sin" 1xy ! cot xy ! sec x
y ! csc xy ! tan xy ! cos x
y ! sin xy ! loga xy ! ln x
y ! axy ! e xy ! xn

(d) Why is the natural logarithmic function used more
often in calculus than the other logarithmic functions

?

4. (a) Explain how implicit differentiation works.

(b) Explain how logarithmic differentiation works.

5. Give several examples of how the derivative can be interpreted
as a rate of change in physics, chemistry, biology, economics,
or other sciences.

6. (a) Write a differential equation that expresses the law of natural
growth.

(b) Under what circumstances is this an appropriate model for
population growth?

(c) What are the solutions of this equation?

7. (a) Write an expression for the linearization of at .
(b) If , write an expression for the differential .
(c) If , draw a picture showing the geometric mean-

ings of and .

y ! loga x

y ! ln x

y ! f !x" dy
af

dx ! *x
dy*y

3 Review

Concept Check

Determine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1. If and are differentiable, then

2. If and are differentiable, then
d
dx

$f !x"t!x"% ! f !!x"t!!x"

tf

d
dx

$f !x" $ t!x"% ! f !!x" $ t!!x"

tf

3. If and are differentiable, then

4. If is differentiable, then .

5. If is differentiable, then .

6. If , then .

tf

y! ! 2ey ! e2

d
dx

f (sx ) !
f !!x"
2sxf

d
dx

sf !x" !
f !!x"

2sf !x"f

d
dx [ f (t!x")] ! f !(t!x")t!!x"

True-False Quiz
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CHAPTER 3 REVIEW 265

; Graphing calculator or computer required

7. 8.

9. 10.

11. The derivative of a polynomial is a polynomial.

d
dx ! x 2 ! x ! ! ! 2x ! 1 !d

dx
"tan2x# !

d
dx

"sec2x#

d
dx

"ln 10# !
1
10

d
dx

"10 x # ! x10 x"1 12. If , then .

13. The derivative of a rational function is a rational function.

14. An equation of the tangent line to the parabola 
at is .

15. If , then 

f "x# ! "x 6 " x 4# 5 f "31#"x# ! 0

y ! x 2

lim
xl 2

t"x# " t"2#
x " 2

! 80t"x# ! x 5

y " 4 ! 2x"x ! 2#""2, 4#

1–50 Calculate .

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44. y !
sin mx
x

y ! x sinh"x 2 #

y !
"x ! ##4

x 4 ! #4y !
sx ! 1 "2 " x#5

"x ! 3#7

xe y ! y " 1y ! tan2"sin $#
y ! arctan(arcsin sx )y ! sin(tan s1 ! x 3 )
y ! st ln" t 4#y ! cot"3x 2 ! 5#

y ! 10tan %$y ! ln ! sec 5x ! tan 5x !
y ! e cos x ! cos"e x #y ! x tan"1"4x#

y !
"x 2 ! 1# 4

"2x ! 1# 3"3x " 1# 5y ! ln sin x " 1
2 sin2x

y ! "cos x# xy ! log 5"1 ! 2x#

y ! ssin sxsin"xy# ! x2 " y

y ! 1$s3 x ! sxy ! "1 " x"1 #"1

y ! sec"1 ! x 2 #y ! 3 x ln x

y ! e x sec xy ! tan% t
1 ! t 2&

y ! cot"csc x#y ! sarctan x

y ! % u " 1
u 2 ! u ! 1&4

y ! x cos y ! x 2y

y ! ln sec xy !
e1$x

x 2

y ! "arcsin 2x# 2y ! sx cos sx
y ! emx cos nxy ! ln"x ln x#

xe y ! y sin xy !
t 4 " 1
t 4 ! 1

y ! x cos"1xy ! x 2 sin %x

y !
tan x

1 ! cos x
y !

x 2 " x ! 2
sx

y !
1

sx "
1

s5 x3
y ! "x 2 ! x 3#4

y&
45. 46.

47. 48.

49. 50.

51. If , find .

52. If , find .

53. Find if .

54. Find if .

55. Use mathematical induction (page 76) to show that if
, then .

56. Evaluate .

57–59 Find an equation of the tangent to the curve at the given
point.

57. ,  58. ,

59. ,  

60–61 Find equations of the tangent line and normal line to the
curve at the given point.

60. ,  

61. ,  

; 62. If , find . Graph and on the same
screen and comment.

63. (a) If , find .
(b) Find equations of the tangent lines to the curve

at the points and .
; (c) Illustrate part (b) by graphing the curve and tangent lines

on the same screen.
; (d) Check to see that your answer to part (a) is reasonable by

comparing the graphs of and .f &f

"4, 4#"1, 2#y ! xs5 " x

f &"x#f "x# ! xs5 " x

f &ff &"x#f "x# ! xesin x

"0, 2#y ! "2 ! x#e"x

"2, 1#x2 ! 4xy ! y2 ! 13

"0, 1#y ! s1 ! 4 sin x

"0, "1#y !
x2 " 1
x2 ! 1

"%$6, 1#y ! 4 sin2x

lim
tl 0

t 3

tan3"2t#

f "n#"x# ! "x ! n#e xf "x# ! xe x

f "x# ! 1$"2 " x#f "n#"x#

x 6 ! y 6 ! 1y '

t '"%$6#t"$# ! $ sin $

f '"2#f " t# ! s4t ! 1

y ! sin2(cosssin %x )y ! cos(estan 3x )

y ! x tanh"1sxy ! cosh"1"sinh x#

y ! ln ' x 2 " 4
2x ! 5 'y ! ln"cosh 3x#

Exercises
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266 CHAPTER 3 DIFFERENTIATION RULES

64. (a) If , , find and .
; (b) Check to see that your answers to part (a) are reasonable

by comparing the graphs of , , and .

65. At what points on the curve , , 
is the tangent line horizontal?

66. Find the points on the ellipse where the
tangent line has slope 1.

67. If , show that

68. (a) By differentiating the double-angle formula

obtain the double-angle formula for the sine function.
(b) By differentiating the addition formula

obtain the addition formula for the cosine function.

69. Suppose that and , where
, , , , and .

Find (a) and (b) .

70. If and are the functions whose graphs are shown, let
, , and . 

Find (a) , (b) , and (c) .

71–78 Find in terms of .

71. 72.

73. 74.

75. 76.

77. 78.

79–81 Find in terms of and .

79. 80.

81. h!x" ! f !t!sin 4x""

h!x" ! # f !x"
t!x"

0

g

f

y

x1

1

h!x" !
f !x"t!x"

f !x" ! t!x"

t"f "h"

f !x" ! t!ln x"f !x" ! ln $ t!x" $
f !x" ! e t!x"f !x" ! t!e x "

f !x" ! t!t!x""f !x" ! % t!x"&2

f !x" ! t!x 2 "f !x" ! x 2t!x"

t"f "

C"!2"Q"!2"P"!2"
C!x" ! f !t!x""Q!x" ! f !x"'t!x"P!x" ! f !x"t!x"

tf

F"!2"h"!2"
f "!5" ! 11f "!2" ! # 2t"!2" ! 4t!2" ! 5f !2" ! 3

F!x" ! f !t!x""h!x" ! f !x"t!x"

sin!x ! a" ! sin x cos a ! cos x sin a

cos 2x ! cos2x # sin2x

f "!x"
f !x"

!
1

x # a
!

1
x # b

!
1

x # c

f !x" ! !x # a"!x # b"!x # c"

x 2 ! 2y 2 ! 1

0 $ x $ 2%y ! sin x ! cos x

f &f "# %'2 ' x ' %'2f !x" ! 4x # tan x

f &f "f

; 82. (a) Graph the function in the viewing 
rectangle by .

(b) On which interval is the average rate of change larger:
or ?

(c) At which value of is the instantaneous rate of change
larger: or ?

(d) Check your visual estimates in part (c) by computing
and comparing the numerical values of 

and .

83. At what point on the curve is the tangent 
horizontal?

84. (a) Find an equation of the tangent to the curve that is
parallel to the line .

(b) Find an equation of the tangent to the curve that
passes through the origin.

85. Find a parabola that passes through the
point and whose tangent lines at and
have slopes 6 and , respectively.

86. The function , where a, b, and K are
positive constants and , is used to model the concentra-
tion at time t of a drug injected into the bloodstream.
(a) Show that .
(b) Find , the rate at which the drug is cleared from 

circulation.
(c) When is this rate equal to 0?

87. An equation of motion of the form
represents damped oscillation of an object. Find the velocity
and acceleration of the object.

88. A particle moves along a horizontal line so that its coor-
dinate at time is , , where and 
are positive constants.
(a) Find the velocity and acceleration functions.
(b) Show that the particle always moves in the positive 

direction.

89. A particle moves on a vertical line so that its coordinate at
time is , .
(a) Find the velocity and acceleration functions.
(b) When is the particle moving upward and when is it 

moving downward?
(c) Find the distance that the particle travels in the time 

interval .
; (d) Graph the position, velocity, and acceleration functions

for .
(e) When is the particle speeding up? When is it slowing

down?

90. The volume of a right circular cone is , where 
is the radius of the base and is the height.

(a) Find the rate of change of the volume with respect to the
height if the radius is constant.

r h
V ! 1

3%r 2h

0 $ t $ 3

0 $ t $ 3

t y ! t 3 # 12t ! 3 t ( 0

t x ! sb 2 ! c 2t 2 t ( 0 b c

s ! Ae# ct cos!)t ! *"

C"!t"
lim tl +C!t" ! 0

b , a
C!t" ! K!e# at # e# bt "

# 2
!1, 4" x ! # 1 x ! 5

y ! ax 2 ! bx ! c

y ! e x
x # 4y ! 1

y ! e x

y ! %ln!x ! 4"&2

f "!5"
f "!x" f "!2"

x ! 2 x ! 5
x

%1, 2& %2, 3&

%# 2, 8&%0, 8&
f !x" ! x # 2 sin x
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CHAPTER 3 REVIEW 267

(b) Find the rate of change of the volume with respect to the
radius if the height is constant.

91. The mass of part of a wire is kilograms, where 
is measured in meters from one end of the wire. Find the lin-

ear density of the wire when m.

92. The cost, in dollars, of producing units of a certain com-
modity is

(a) Find the marginal cost function.
(b) Find and explain its meaning.
(c) Compare with the cost of producing the 

101st item.

93. A bacteria culture contains 200 cells initially and grows at a
rate proportional to its size. After half an hour the population
has increased to 360 cells.
(a) Find the number of bacteria after hours.
(b) Find the number of bacteria after 4 hours.
(c) Find the rate of growth after 4 hours.
(d) When will the population reach 10,000?

94. Cobalt-60 has a half-life of 5.24 years.
(a) Find the mass that remains from a 100-mg sample after 

20 years.
(b) How long would it take for the mass to decay to 1 mg?

95. Let be the concentration of a drug in the bloodstream. As
the body eliminates the drug, decreases at a rate that is
proportional to the amount of the drug that is present at the
time. Thus , where is a positive number called
the elimination constant of the drug.
(a) If is the concentration at time , find the concentra-

tion at time .
(b) If the body eliminates half the drug in 30 hours, how long

does it take to eliminate 90% of the drug?

96. A cup of hot chocolate has temperature in a room kept 
at . After half an hour the hot chocolate cools to .
(a) What is the temperature of the chocolate after another half

hour?
(b) When will the chocolate have cooled to ?

97. The volume of a cube is increasing at a rate of 10 .
How fast is the surface area increasing when the length of an
edge is 30 cm?

98. A paper cup has the shape of a cone with height 10 cm and
radius 3 cm (at the top). If water is poured into the cup at a rate
of , how fast is the water level rising when the water is
5 cm deep?

99. A balloon is rising at a constant speed of . A boy is
cycling along a straight road at a speed of . When he
passes under the balloon, it is 45 ft above him. How fast is the
distance between the boy and the balloon increasing 3 s later?

x(1 ! sx )

15 ft!s
5 ft!s

2 cm3!s

cm3!min

40"C

20"C 60"C
80"C

t
C0 t ! 0

C#"t# ! $ kC"t# k

C"t#
C"t#

t

C#"100#
C#"100#

C"x# ! 920 ! 2x $ 0.02x 2 ! 0.00007x 3

x

x ! 4
x

100. A waterskier skis over the ramp shown in the figure at a speed
of . How fast is she rising as she leaves the ramp?

101. The angle of elevation of the sun is decreasing at a rate of
. How fast is the shadow cast by a 400-ft-tall 

building increasing when the angle of elevation of the sun 
is ?

; 102. (a) Find the linear approximation to 
near 3.

(b) Illustrate part (a) by graphing and the linear 
approximation.

(c) For what values of is the linear approximation accurate
to within 0.1?

103. (a) Find the linearization of at . State
the corresponding linear approximation and use it to give
an approximate value for .

; (b) Determine the values of for which the linear approxima-
tion given in part (a) is accurate to within 0.1.

104. Evaluate if , , and .

105. A window has the shape of a square surmounted by a semi -
circle. The base of the window is measured as having width
60 cm with a possible error in measurement of 0.1 cm. Use
differentials to estimate the maximum error possible in com-
puting the area of the window.

106–108 Express the limit as a derivative and evaluate.

106. 107.

108.

109. Evaluate .

110. Suppose is a differentiable function such that
and . Show that .

111. Find if it is known that

112. Show that the length of the portion of any tangent line to the
astroid cut off by the coordinate axes is
constant.

30 ft!s

4 ft
15 ft

x 2!3 ! y 2!3 ! a 2!3

d
dx

$ f "2x#% ! x 2

f #"x#

t#"x# ! 1!"1 ! x 2 #f #"x# ! 1 ! $ f "x#%2
f "t"x## ! xf

lim
x l 0

s1 ! tan x $ s1 ! sin x
x 3

lim
% l &!3

cos % $ 0.5
% $ &!3

lim
h l 0

s4 16 ! h $ 2
h

lim
x l1

x 17 $ 1
x $ 1

dx ! 0.2x ! 2y ! x 3 $ 2x 2 ! 1dy

x
s3 1.03

a ! 0f "x# ! s3 1 ! 3x

x

f

f "x# ! s25 $ x 2

&!6

0.25 rad!h
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Problems Plus

268

Before you look at the examples, cover up the solutions and try them yourself first.

How many lines are tangent to both of the parabolas and
? Find the coordinates of the points at which these tangents touch the 

parabolas.

SOLUTION To gain insight into this problem, it is essential to draw a diagram. So we
sketch the parabolas (which is the standard parabola shifted 1 unit
upward) and (which is obtained by reflecting the first parabola about the 
x-axis). If we try to draw a line tangent to both parabolas, we soon discover that there are
only two possibilities, as illustrated in Figure 1.

Let P be a point at which one of these tangents touches the upper parabola and let a be
its x-coordinate. (The choice of notation for the unknown is important. Of course we
could have used b or c or or instead of a. However, it’s not advisable to use x in
place of a because that x could be confused with the variable x in the equation of the
parabola.) Then, since P lies on the parabola , its y-coordinate must be

Because of the symmetry shown in Figure 1, the coordinates of the point Q
where the tangent touches the lower parabola must be .

To use the given information that the line is a tangent, we equate the slope of the line
PQ to the slope of the tangent line at P. We have

If , then the slope of the tangent line at P is . Thus the condi-
tion that we need to use is that

Solving this equation, we get , so and . Therefore the
points are (1, 2) and (!1, !2). By symmetry, the two remaining points are (!1, 2) and
(1, !2).

For what values of does the equation have exactly one solution?

SOLUTION One of the most important principles of problem solving is to draw a dia-
gram, even if the problem as stated doesn’t explicitly mention a geometric situation.
Our present problem can be reformulated geometrically as follows: For what values of
does the curve intersect the curve in exactly one point?

Let’s start by graphing and for various values of . We know that,
for , is a parabola that opens upward if and downward if .
Figure 2 shows the parabolas for several positive values of . Most of them
don’t intersect at all and one intersects twice. We have the feeling that there
must be a value of (somewhere between and ) for which the curves intersect
exactly once, as in Figure 3.

To find that particular value of , we let be the -coordinate of the single point of
intersection. In other words, , so is the unique solution of the given equa-
tion. We see from Figure 3 that the curves just touch, so they have a common tangent
line when . That means the curves and have the same slope
when . Therefore

1
a

! 2ca

x ! a
x ! a y ! ln x y ! cx 2

ln a ! ca 2 a
c a x

EXAMPLE 2

0.30.1c
y ! ln x

cy ! cx 2
c " 0c # 0y ! cx 2c " 0

cy ! cx 2y ! ln x
y ! cx 2y ! ln x

c

ln x ! cx 2c

EXAMPLE 1

a ! $1a 2 ! 11 % a 2 ! 2a 2

1 % a 2

a
! 2a

f &!a" ! 2af !x" ! 1 % x 2

mPQ !
1 % a 2 ! !!1 ! a 2 "

a ! !!a"
!

1 % a 2

a

!!a, !!1 % a 2 ""
1 % a 2.

y ! 1 % x 2

x1x0

y ! !1 ! x 2
y ! x 2y ! 1 % x 2

y ! 1 % x 2
y ! !1 ! x 2

x

y

P

Q

1

_1
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0
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0.1≈

≈1
2

x

y

y=ln x
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y
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Solving the equations and , we get

Thus and

For negative values of we have the situation illustrated in Figure 4: All parabolas
with negative values of intersect exactly once. And let’s not forget

about : The curve is just the -axis, which intersects exactly
once.

To summarize, the required values of are and .

1. Find points and on the parabola so that the triangle formed by the 
-axis and the tangent lines at and is an equilateral triangle. (See the figure.)

; 2. Find the point where the curves and are tangent to each
other, that is, have a common tangent line. Illustrate by sketching both curves and the 
common tangent.

3. Show that the tangent lines to the parabola at any two points with 
-coordinates and must intersect at a point whose -coordinate is halfway between 

and .

4. Show that

5. If , find the value of .

6. Find the values of the constants and such that

7. Show that .

ln a ! ca 2 1!a ! 2ca

sin!1"tanh x# ! tan!1"sinh x#

lim
xl 0

s3 ax " b ! 2
x

!
5
12

x

y

P Q

A

0B C

ba

f #"$!4#f "x# ! lim
tl x

sec t ! sec x
t ! x

d
dx $ sin2x

1 " cot x
"

cos2x
1 " tan x% ! !cos 2x

q
pxqpx

y ! ax 2 " bx " c

y ! 3"x 2 ! x#y ! x 3 ! 3x " 4

QPx
ABCy ! 1 ! x 2QP

c % 0c ! 1!"2e#c

y ! ln xxy ! 0x 2 ! 0c ! 0
y ! ln xcy ! cx 2

c

c !
ln a
a 2 !

ln e 1!2

e
!

1
2e

a ! e 1!2

ln a ! ca 2 ! c !
1
2c

!
1
2
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y=ln x

Problems

; Graphing calculator or computer required

Computer algebra system requiredCAS
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8. A car is traveling at night along a highway shaped like a parabola with its vertex at the origin
(see the figure). The car starts at a point 100 m west and 100 m north of the origin and travels
in an easterly direction. There is a statue located 100 m east and 50 m north of the origin. At
what point on the highway will the car’s headlights illuminate the statue?

9. Prove that .

10. Find the th derivative of the function .

11. The figure shows a circle with radius 1 inscribed in the parabola . Find the center of
the circle.

12. If is differentiable at , where , evaluate the following limit in terms of :

13. The figure shows a rotating wheel with radius 40 cm and a connecting rod with length
1.2 m. The pin slides back and forth along the -axis as the wheel rotates counter clockwise
at a rate of 360 revolutions per minute.
(a) Find the angular velocity of the connecting rod, , in radians per second, 

when .
(b) Express the distance in terms of .
(c) Find an expression for the velocity of the pin in terms of .

14. Tangent lines and are drawn at two points and on the parabola and they
intersect at a point . Another tangent line is drawn at a point between and ; it inter-
sects at and at . Show that

15. Show that

where and are positive numbers, , and .

16. Evaluate .lim
xl !

e sin x " 1
x " !

x0

y

11

y=≈

f !x" ! xn#!1 " x"n

dn

dxn
!sin4x # cos4x" ! 4n" 1 cos!4x # n!#2"

$ ! tan" 1!b#a"r 2 ! a 2 # b 2ba

dn

dxn
!eax sin bx" ! r ne ax sin!bx # n$"

$PQ1 $
$PP1 $ # $PQ2 $

$PP2 $ ! 1

Q2T2Q1T1

P2P1TP
y ! x 2P2P1T2T1

$P
$x ! $OP $

$ ! !#3
d%#dt

xP
AP

lim
xla

f !x" " f !a"
sx " sa

f &!a"a ' 0af

y ! x 2
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17. Let and be the tangent and normal lines to the ellipse at any point on
the ellipse in the first quadrant. Let and be the - and -intercepts of and and be
the intercepts of . As moves along the ellipse in the first quadrant (but not on the axes),
what values can , , , and take on? First try to guess the answers just by looking at
the figure. Then use calculus to solve the problem and see how good your intuition is.

18. Evaluate .

19. (a) Use the identity for (see Equation 14b in Appendix D) to show that if two
lines and intersect at an angle , then

where and are the slopes of and , respectively.
(b) The angle between the curves and at a point of intersection is defined to be 

the angle between the tangent lines to and at (if these tangent lines exist). Use
part (a) to find, correct to the nearest degree, the angle between each pair of curves at
each point of intersection.
(i) and  

(ii) and  

20. Let be a point on the parabola with focus . Let be the angle
between the parabola and the line segment , and let be the angle between the horizontal
line and the parabola as in the figure. Prove that . (Thus, by a prin ciple of geo-
metrical optics, light from a source placed at will be reflected along a line parallel to the 
-axis. This explains why paraboloids, the surfaces obtained by rotating parabolas about their

axes, are used as the shape of some automobile headlights and mirrors for telescopes.)

0 x
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21. Suppose that we replace the parabolic mirror of Problem 20 by a spherical mirror. Although
the mirror has no focus, we can show the existence of an approximate focus. In the figure, 

is a semicircle with center . A ray of light coming in toward the mirror parallel to the axis
along the line will be reflected to the point on the axis so that (the
angle of incidence is equal to the angle of reflection). What happens to the point as is
taken closer and closer to the axis?

22. If and are differentiable functions with and , show that

23. Evaluate .

24. (a) The cubic function has three distinct zeros: 0, 2, and 6. Graph 
and its tangent lines at the average of each pair of zeros. What do you notice?

(b) Suppose the cubic function has three distinct zeros: 
, , and . Prove, with the help of a computer algebra system, that a tangent line drawn

at the average of the zeros intersects the graph of at the third zero.

25. For what value of does the equation have exactly one solution?

26. For which positive numbers is it true that for all ?

27. If

show that .

28. Given an ellipse , where , find the equation of the set of all points
from which there are two tangents to the curve whose slopes are (a) reciprocals and (b) nega-
tive reciprocals.

29. Find the two points on the curve that have a common tangent line.

30. Suppose that three points on the parabola have the property that their normal lines
intersect at a common point. Show that the sum of their -coordinates is 0.

31. A lattice point in the plane is a point with integer coordinates. Suppose that circles with
radius are drawn using all lattice points as centers. Find the smallest value of such that
any line with slope intersects some of these circles.

32. A cone of radius centimeters and height centimeters is lowered point first at a rate of
1 cm!s into a tall cylinder of radius centimeters that is partially filled with water. How fast
is the water level rising at the instant the cone is completely submerged?

33. A container in the shape of an inverted cone has height 16 cm and radius 5 cm at the top. It 
is partially filled with a liquid that oozes through the sides at a rate proportional to the area 
of the container that is in contact with the liquid. (The surface area of a cone is , where
is the radius and is the slant height.) If we pour the liquid into the container at a rate of

, then the height of the liquid decreases at a rate of 0.3 cm!min when the height 
is 10 cm. If our goal is to keep the liquid at a constant height of 10 cm, at what rate should
we pour the liquid into the container?

2 cm3!min
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