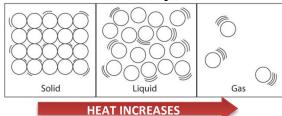
ZNOTES // IGCSE SERIES

visit www.znotes.org

Updated to 2016-18 Syllabus

CIE IGGE CHEMISTRY 0620

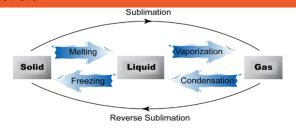
SUMMARIZED NOTES ON THE EXTENDED SYLLABUS


TABLE OF CONTENTS

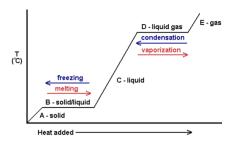
- The Particulate Nature of Matter
- 4 CHAPTER 2
 Experimental Techniques
- 5 CHAPTER 3 Atoms, Elements and Compounds
- CHAPTER 4
 Stoichiometry
- 8 CHAPTER 5 Electricity and Chemistry
- 9 Chapter 6 Chemical Energetics
- Chemical Reactions
- 12 CHAPTER 8
 Acids, Bases and Salts
- 14 CHAPTER 9
 The Periodic Table
- 15 CHAPTER 10 Metals

- 16 Air and Water
- 18 CHAPTER 12 Sulfur
- 18 Carbonates
- 19 CHAPTER 14
 Organic Chemistry

1. THE PARTICULATE NATURE OF MATTER


1.1 Kinetic Particle Theory

- When a solid is heated, particles vibrate faster about a fixed point causing particles to move further apart and so solid expands
- When particles gain sufficient energy to overcome strong forces of attraction, they move out of their fixed position and can slide over each other in a continuous random motion – solid has melted.
- Particles in liquid have energy to move around but are still close to each other and do not have enough energy to overcome the forces that hold them close to each other.
- If more heat's supplied, particles move faster until they have enough energy to overcome the forces of attraction. Particles escape the liquids surface and move around in continuous rapid motion – the liquid has boiled
- In the vapor, the particles move in rapid random motion. This movement is due to collision of vapor particles with air particles.


1.2 States of Matter

SOLID	LIQUID	GAS
 Strong forces 	• Weaker	 Almost no
of attraction	attractive	intermolecular
between	forces than	forces
particles	solids	 Particles far
 Fixed pattern 	No fixed	apart, and
(lattice)	pattern, liquids	move quickly
 Atoms vibrate 	take up the	 Collide with
but can't	shape of their	each other and
change	container	bounce in all
position ∴	 Particles slide 	directions
fixed volume	past each	
and shape	other.	

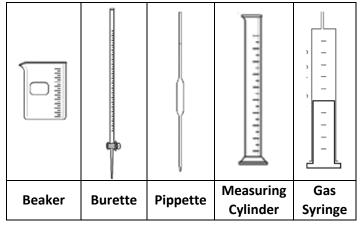
PROCESS	HEAT ENERGY	EXO/ENDOTHERMIC
Melting	Gained	Endothermic
Boiling	Gained	Endothermic
Condensing	Lost	Exothermic
Freezing	Lost	Exothermic
Sublimation	Gained	Endothermic
Reverse sublimation	Lost	Exothermic

1.3 Heating Curve

1.4 Diffusion

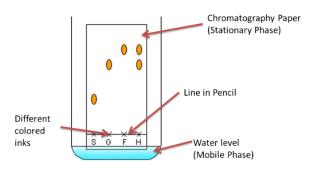
- Diffusion is the spreading of one substance through another from a region of high concentration to a region of low concentration due to the continuous random motion of particles.
- Evidence for diffusion:
- In liquids: potassium manganate (VII) in a beaker of water
- In gases: a gas jar of air and a gas jar of bromine connected

- Factors that affect the rate of diffusion:
- Temperature increases → rate of diffusion increases
- Lower density gas → rate of diffusion is higher


2. EXPERIMENTAL TECHNIQUES

2.1 Measurement

VARIABLE	APPARATUS
• Time	Stopwatch or Clock
• Temperature	Thermomemeter (liquid in glass, thermistor or thermocouple)
Mass	Balance

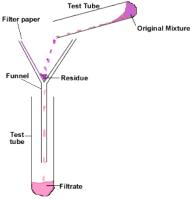

ADDADATIIC

Measuring Volume:

2.2 Critertia of Purity

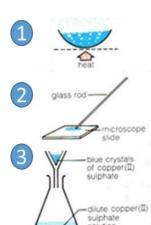
- Paper chromatography:
 - o Drop substance to center of filter paper and allow it to dry
 - o Drop water on substance, one drop at a time
 - Paper + rings = chromatogram.
 - o Principle: Difference in solubility separates different pigments
 - Substances travel across paper at different rates which is why they separate into rings
 - o Method works because different substances travel at different levels of attraction to it

- Stationary phase is material on which separation takes
- Mobile phase consists of the mixture you want to separate, dissolved in a solvent.


- Interpreting simple chromatograms:
 - O Number of rings/dots = number of substances
 - o If two dots travel the same distance up the paper they are the same substance.
 - o You can calculate the Rf value to identify a substance, given by the formula:

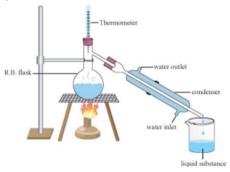
$$Rf\ Value = \frac{Distance\ moved\ by\ solute}{Distance\ moved\ by\ solvent}$$

- To make colourless substances visible, use a locating agent:
 - Dry paper in oven
 - Spray it with locating agent
 - Heat it for 10 minutes in oven
- Assesing purity from m.p./b.p:
 - o Pure substances have a definite, sharp m.p./b.p.
 - Substance+impurity has lower m.p. and higher b.p.
 - More impurity means bigger change


<u>2.3 Filtration</u>

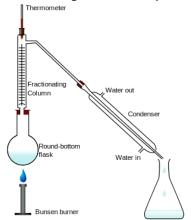
- Mixture goes in a funnel with filter paper, into a flask.
- Residue is insoluble and stays at top.
- Filtrate goes through

2.4 Crystallization


- Some water in the solution is evaporated so solution becomes more concentrated.
- A drop is placed on a slide to check if crystals are forming.
- Solution is left to cool and crystallise.
- Crystals are filtered to remove solvent.

2.5 Simple Distillation

- Impure liquid is heated
- It boils, and steam rises into the condenser
- Impurities are left behind


Condenser is cold so steam condenses to the pure liquid and it drops into the beaker

2.6 Fractional Distillation

- Removes a liquid from a mixture of liquids, because liquids have different b.p.s
- Mixture is heated to evaporate substance with lowest b.p.
- some of the other liquid(s) will evaporate too.
- A mixture of gases condense on the beads in the fractional column.
- So the beads are heated to the boiling point of the lowest substance, so that substance being removed cannot condense on the beads.
- The other substances continue to condense and will drip back into the flask.

The beaker can be changed after every fraction

2.7 Seperating Mixture of Two Solids

- Can be done by dissolving one in an appropriate solvent
- Then filter one and extract other from solution by evaporation

If one solid is magnetic, can use a magnet e.g. sand and iron fillings

SOLVENT	IT DISSOLVES
Water	Some salts, sugar
White spirit	Gloss paint
Propanone	Grease, nail polish
Ethanol	Glues, printing inks, scented substances

2.8 Choosing a Suitable Method

METHOD OF SEPARATION	USED TO SEPARATE
Filtration	A solid from a liquid
Evaporation	A solid from a solution
Crystallization	A solid from a solution
Simple Distillation	A solvent from a solution
Fractional Distillation	Liquids from each other
Chromatography	Different substances from a
	solution

3. ATOMS, ELEMENTS AND COMPOUNDS

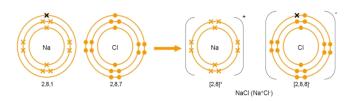
3.1 Atomic Structure and the Periodic Table

PARTICLE	RELATIVE CHARGE	IVIASS
.,		(ATOMIC MASS)
Proton	+1	1
Neutron	0	1
Electron	-1	1/1837

- Proton number: number of protons in an atom (and number of electrons in an atom)
- **Nucleon number:** number of protons + neutrons in an atom.
- In the periodic table
 - The proton number increases by 1 when you go to the right
 - When you go one element down, you increase proton number by 8 in the first 3 periods (transition elements not included)
- **Isotopes:** atoms of same element with different no. of neutrons
 - o E.g. Carbon 12 and Carbon 14.
 - Two types: non-radioactive isotopes and radioactiveisotopes which are unstable atoms that break down giving radiations
 - Medical use: cancer treatment (radiotherapy) rays kill cancer cells using cobalt-60
 - Industrial use: to check for leaks radioisotopes (tracers) added to oil/gas. At leaks radiation is detected using a Geiger counter.

- Electrons are arranged in electron shells.
- Atoms want to have full outer shells (full set of valency electrons), this is why they react.
- Noble gases have full outer shells so they have no need to react.
- Electron shell structure: 2, 8, 8, 18.
- More reactive elements have a greater desire to have a full outer shell, so also form more stable compounds.

3.2 Bonding: the Structure of Matter


- Element: substance that cannot be split into anything simpler, in a chemical reaction. Each element has a unique proton number.
- Mixture: two or more elements mixed together but not chemically combined
- **Compound:** substance in which two or more different elements are chemically combined

METALS	NON-METALS
Strong	Brittle
Good conductors of heat & electricity	Poor conductors of heat & electricity (except graphite)
High m.p. and b.p.	Lower m.p. and b.p. than metals
High density	Low density
Forms basic oxides	Forms acidic oxides
Forms cations in reactions	Forms anions in reactions
Malleable and ductile	
Sonorous	
Some are magnetic	

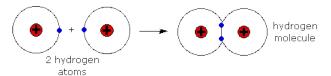
• Alloy: Mixture of two or more metals or mixture of one or more metal with a non-metal, to improve its properties

3.3 Ions and Ionic Bonds

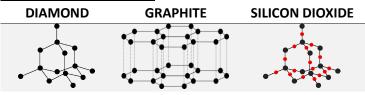
- Chemical bond formed by transfer of \overline{e} s from one atom to another
- Metals lose \overline{e} s to form cations, non-metals gain \overline{e} s to form anions
- Positive cations & negative anions attract to each other
- Strong electrostatic force of attraction between positive cations and negative anions is called ionic bonding

PROPERTY	REASON
Form giant lattice	Cations and anions attract
High m.p. and b.p.	Strong bonds between ions
Don't conduct electricity when solid	lons can't move
Conduct electricity when molten/aqueous	lons can move
Usually soluble in water	Not required

3.4 Molecules and Covalent Bonds


- When atoms share \overline{e} s to obtain a noble gas electron structure
- Covalent bonding takes place between non-metals only

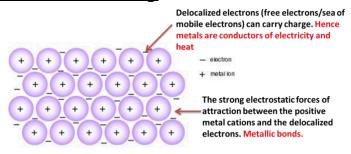
SINGLE BOND	DOUBLE BOND	TRIPLE BOND
н—н	0=0	$N \equiv N$
0 - 0		
$2\overline{e}$ s shared	$4\overline{e}$ s shared	$6\overline{e}$ s shared
(1 from each	(2 from each	(3 from each
atom)	atom)	atom)


REASON PROPERTY

Low m.p. and b.p. Weak intermolecular forces Usually liquid, gas or low of attraction between m.p solid molecules Don't conduct electricity No mobile ions/electrons Usually insoluble in water Not required

• Example:

3.5 Macromolecules



- Four bonds
- High m.p.
- Doesn't conduct
- Used for cutting Held together by as is srongest known substance
- Three bonds
- Made of flat sheets
 - weak forces so is soft ∴ used as a **lubricant**
 - Conducts electricity as it has one free e

- Makes up sand
- Each Si is bonded to 4 oxygen atoms, and each oxygen is bonded to 2 silicon atoms
- ∴ it has a high m.p. and is hard, like diamond

- Melting point: high structure made up of strong covalent bonds
- Electrical: don't conduct electricity have no mobile ions or electrons, except for graphite
- Strength: hard exists in tetrahedral structure but graphite is soft

3.6 Metallic Bonding

The layers are held together by the delocalized electrons. When force is applied, these electrons act like glue holding the structure in shape. Hence metals are malleable and ductile

Positive ions held together by electrons – acts like glue

4. STOICHIOMETRY

- Balancing equations: a chemical equation is balanced when there are equal number of atoms and charges on both sides of the equation
- State symbols:
 - (s) = solid
 - (I) = liquid
 - \circ (g) = gas
 - o (aq) = aqueous solution

4.1 Valency Table

NAME	FORMULA	VALENCY
Nitrate	NO_3^-	1
Hydroxide	OH ⁻	1
Acetate/	CH ₃ COO⁻	1
ethanoate		
Carbonate	CO ₃ ²⁻	2
Sulphate	SO ₄ ² -	2
Silicate	SiO ₃ ²⁻	2
Phosphate	PO ₄ ³⁻	3

4.3 Ending of Names

- Compound ending with -ide only contain two different elements
- Compound ending with -ate contain oxygen

4.4 Masses

- Relative atomic mass (A_r): mass of one atom of an element relative to one twelfth of the mass of one atom of Carbon-12
- Relative molecular mass (M_r): sum of relative atomic masses of all the atoms in one molecule of the compound

4.5 The Mole Concept

- A mole of a substance is the amount that contains the same number of units as the number of carbon atoms in 12 grams of carbon-12
- A mole is the A_r or M_r expressed in grams e.g. 1 mole of Carbon-12 is equal to 12 grams.
- It is equal to 6.02×10^{23} atoms, this number is called Avogadro's constant.

4.6 Number of Moles

$$Number\ of\ Moles = \frac{mass}{molar\ mass}$$

4.7 Moles in Gases

 $Volume = No. of Moles \times 24dm^3$

4.8 Concentration

$$Concentration = \frac{no.\,of\,\,moles}{volume}$$

- Moles per dm³
 - 1mol/dm3 = 1M
- Grams per dm3, g/dm3

4.9 Molecular Formulae

 The formula using the actual number of atoms in a molecule

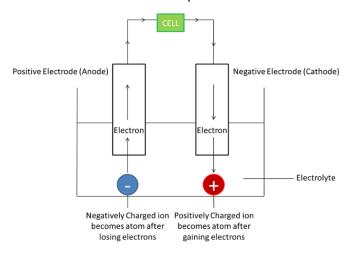
4.10 Empirical Formulae

- This is the simplest ratio of the atoms in a compound
- For example:
 - Molecular formula of ethanol = C₂H₅OH
 - Empirical formula of ethanol = C₂H₆O
- To find out the empirical formula you:
 - Make the percent ratio into the simplest whole number ratio (NOTE: if given %s, use them as grams)
 - Divide the coefficients of each element symbol by the lowest coefficient

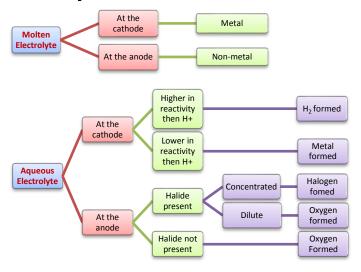
4.11 Percentages

- Percentage purity = $\frac{mass\ of\ product\ (pure)}{mass\ of\ compound\ (impure)} \times 100$
- Percentage yield = $\frac{actual\ mass\ obtained}{calculated\ mass} \times 100$

5. ELECTRICITY AND CHEMISTRY


• Decomposition of an electrolyte with the help of electric current

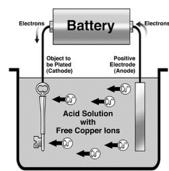
• Electrolyte:


- o Aq. solution of ionic substance or molten ionic salt
- Conducts electricity due to the presence of mobile ions

• Electrodes:

- o Rods which help current enter the electrolyte
- o Inert electrodes: do not take part in the reaction
- o Reactive electrodes: take part in the reaction

5.1 Principle



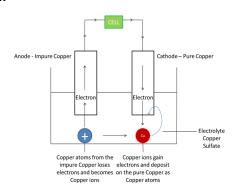
5.2 Examples

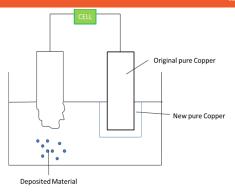
ELECTROLYTE	AT	AT
	CATHODE	ANODE
Molten lead(II) bromide	Lead	Bromine
Concentrated hydrochloric acid	Hydrogen	Chlorine
Concentrated aqueous sodium	Hydrogen	Chlorine
chloride		

5.3 Electroplating

- Coating one metallic object with another metal using electrolysis
- For electroplating, you need:
 - Anode made of metal you want to electroplate object with
 - lons of same metal as anode in solution
 - Object to be plated at cathode
- Used to:
 - Make things look better
 - o Prevent corrosion

DI ASTIC &


5.4 *Uses*

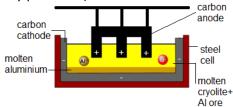

A I I I B A I B I I I B A	CODDED	PLASTIC &
ALUMINUM	COPPER	CERAMICS
Used for	• Used in	• Used as
electricity cables	electrical wires	insulators
because:	as it is:	because they:
Light	 A very good 	 Don't conduct
o Non-	conductor	electricity
corrosive	(not best)	 Conduct heat
o Good	 Ductile 	poorly
conductor		 Plastic used for
 Cheaper than 		casing in plugs
copper		 Ceramics used to
Cables have		support cables in
steel core, for		electricity pylons
strength		

5.6 Refining Metals

- This is purifying impure metals
- Rules:
 - o Cathode: thin strip of pure metal
 - o Anode: impure metal
 - o Electrolyte: Aqueous Salt Solution of metal

• Example:

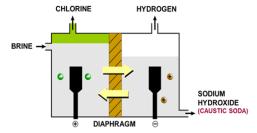
- Reaction at Anode: $Cu 2e \rightarrow Cu^{2+}$ (mass decreases)
- Reaction at Cathode: Cu²+ + 2e → Cu (mass increases)


5.7 Basics

- Electrolysis is a way to decompose compounds, using electricity.
- Reduction of positive cations happens at the cathode
- Oxidation of negative anions happens at the anode
- For example:

○ At the anode: $2Cl^{-} \rightarrow Cl_2 + 2e^{-}$ ○ At the cathode: $2H^{+} + 2e^{-} \rightarrow H_2$

5.8 Extraction of Aluminium


- The main ore of aluminium is bauxite high m.p.
- Aluminium (III) oxide (alumina) is dissolved in molten cryolite (Na₃AlF₆) – this mixture has a lower m.p. (industrially preferred)

- During electrolysis aluminium is produced at the carbon cathode and oxygen at the carbon anode.
- Due to the high temp. the oxygen reacts with the graphite anode to form CO₂ and so anode had to be periodically replaced

5.9 Electrolysis of Brine

- Brine is concentrated NaCl solution
- Ions present: Na⁺, H⁺, Cl⁻ and OH⁻

AT THE ANODE

- Made of titanium
- Chlorine gas evolved
- Unreacted ions (Na⁺, H⁺ and OH⁻) move through porous membrane due to difference in liquid pressure
- Net flow to the right

AT THE CATHODE

- Made of steel
- Hydrogen cations reduced to H₂ molecules
- Left Na⁺ and OH⁻ which is aqueous sodium hydroxide

6. CHEMICAL ENERGETICS

6.1 Energetics of a Reaction

- Exothermic reaction: one that releases heat energy into the surrounding
- Endothermic reaction: one which absorbs heat energy from the surroundings
- Bond breaking is endothermic
- Bond making is exothermic

EXOTHERMIC REACTION

Energy given out to the surroundings

- Surroundings become hot
- Bond making exothermic

ENDOTHERMIC REACTION

- Energy is taken in from the surroundings
- Surroundings become cold
- Bond breaking endothermic

6.2 Energy Level Diagrams

<u>6.3 Bond Energy</u>

- This is the amount of energy consumed or liberated when a bond is broken or formed in kJ/mol
 - $\Delta H = Bond Breaking + Bond Forming$
- If overall heat energy is negative, reaction is exothermic
- If overall heat energy is positive, reaction is endothermic

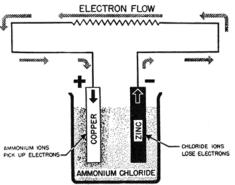
6.4 Production of Energy

- A fuel is a substance which can be conveniently used as a source of energy.
- Burning fuels (like oil) to form oxides is an exothermic reaction.
- The heat from burning fuels is used in power plants to create steam from water and turn turbines.

- In order for any material to combust three things must be present:
 - o Fuel
 - o Heat
 - Oxygen
- A good fuel would:
 - o Be cheap
 - Be available in large quantities
 - o Ba a liquid at room temperature
 - o Produce a large amount of energy when combusted
 - Not produce polluting gases

6.5 Hydrogen

- Burns explosively with oxygen, so it is used in rockets.
- In a fuel cell, it combines with oxygen without burning.
- Produced by reacting methane gas with steam


ADVANTAGES DISADVANTAGES Produces a lot of energy • Difficult to transport as it Abundant on earth (sea) is a gas at room temperature Less pollutant • Renewable fuel Forms explosive mixture

6.6 Simple Cells

• A cell is a device which converts chemical energy into electrical energy and is composed of two metals of different reactivity connected by an external circuit and an electrolyte

with air – very dangerous

- The process works due to the different reactivity of metals
- Consists of a negative pole (the more reactive metal) and a positive pole (less reactive metal) and an electrolyte.
- The greater the difference in reactivity of the two metals, the greater the voltage will be.
- The electrons flow because one metal is more reactive, so it has a stronger drive to give up its electrons.
- The atoms give up electrons and enter the solution as ions.

6.7 Radioactive Isotopes

- Uranium-235 can be used in nuclear power stations to produce electricity
- The radioactive isotope is bombarded by neutrons resulting in a lot of heat being produced
- Small amount of radioactive fuel produces large amount of heat
- Advantages: lots of energy is from a small amount and
- Disadvantage: radioactive waste produced and nonrenewable

7. CHEMICAL REACTIONS

7.1 Collision Theorev

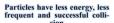
- Collisions are needed for a chemical reaction to take
- Successful collisions have enough activation energy at moment of impact to break preexisting bonds and form new bonds

7.2 Rates of Reaction

- Rate of a chemical reaction is the concentration of reactant used up or product made in a given time.
- Unit = (mol/dm³)/s

7.3 Concentration

- Increasing concentration of reactants increases rate of reaction
- This is because there are more particles per unit volume, so the collision rate between reacting particles increases, therefore the successful collision rate increases, which results in an increased rate of reaction.


Less particles, less frequent and successful collision

More particles, more frequent

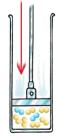
7.4 Temperature

- Increasing temperature increases the rate of reaction
- This is because average kinetic energy of particles increase which means they are moving faster & also more particles have an energy greater/equal to activation energy, therefore successful collision rate increases, resulting in increased rate of reaction

Particles have high energy, more frequent and successful

7.5 Particle Size

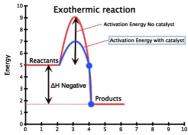
- Decreasing the particle size (increasing surface area) increases the rate of reaction
- This is because there are more reactant particles exposed to collide, so the collision rate increases, therefore the successful collision rate increases, resulting in an increased rate of reaction


More particles, more frequer

 Large surface area can mean danger. For example, flour dust and wood dust have large surface areas, and are combustible. A spark from a machine, or a lit match, can cause an explosion. This also applies to gases from mines.

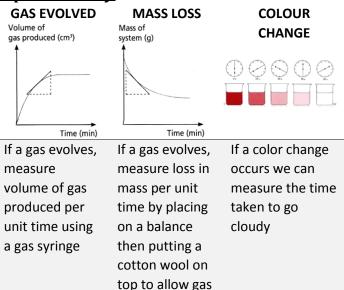
7.6 Pressure in Gaseous System

- Increasing the pressure in a gaseous system increases the rate of reaction
- The distance between particles is reduced under pressure
- There are more particles per unit volume, so the collision rate increases, therefore the



successful collision rate increases, resulting in an increased rate of reaction.

7.7 Catalyst


- A catalyst is a substance (usually a transition metal) which speeds up a chemical reaction, but remains unchanged at the end
- Adding a catalyst increases the rate of reaction
- A catalyst allows the reaction to go by an alternative pathway with lower activation energy
- More particles will have an energy greater than or equal to the activation energy, therefore successful collision rate increases resulting in increased rate of reaction

- For gaseous reactants, if catalyst is solid metal, the catalyst provides a surface for reaction to take place on
- The larger the surface are of the metal catalyst, the larger the area for reaction to take place therefore higher rate of reaction

- Enzymes are protein molecules. They are biological catalysts which speed up reactions but remain chemically unchanged at the end
- Enzymes function best at optimum temperature and pH level otherwise they may denature and completely stop functioning

7.8 Measuring Rates of Reaction Experimentally

7.9 Light Causing a Chemical Reaction

to enter

• A photochemical reaction is one where light causes a reaction to occur. The higher the light intensity the higher the rate of the reaction.

to pass but not

 Photosynthesis: light provides energy for the reaction and chlorophyll is a dye that absorbs light.

carbon dioxide + water \rightarrow (light + chlorophyll) \rightarrow glucose + oxygen

 $6CO_2 + 6H_2O \rightarrow (light + chlorophyll) \rightarrow C_6H_{12}O_6 + 6O_2$

• Silver salts in photographic film: Silver bromide breaks down, where light strikes the film, so silver is reduced. Silver ions are reduced to silver.

 $2AgBr_{(s)} \rightarrow 2Ag_{(s)} + Br_{2(g)}$

7.10 Reversible Reactions

- A reversible reaction is a reaction in which reactants form products and the product(s) can then react or decompose to form the reactants
- Example: $CuSO_4.5H2O$ (blue) $\rightleftharpoons CuSO_4$ (white) + H_2O
- (to get anhydrous, heat it, & to get hydrated form, add water)
- There are two types of equilibrium: static and dynamic.
- At dynamic equilibrium:
 - o Rate of forward reaction = rate of reverse reaction
 - Concentrations of all reactants and products remain constant
 - System is closed, and on large scale everything is constant

7.11 Equilibrium

- Le Châtelier's Principle: if conditions of an equilibrium are changed, the position of equilibrium moves to oppose change
- **Temperature:** Temperature lowered; equilibrium moves in exothermic direction. Temperature raised; equilibrium moves in endothermic direction.
- **Pressure:** Pressure raised; equilibrium moves to side with fewest gas molecules. Pressure lowered; equilibrium moves to side with most gas molecules.
- Concentration: Decreasing reactant concentration or increasing product concentration; equilibrium moves to reactant side. Increasing reactant concentration or decreasing product concentration; equilibrium moves to product side.

7.12 Redox

• A redox reaction is one in which one species has been oxidized and another species has been reduced

OXIDATION MEANS:

REDUCTION MEANS:

- Loss of electrons
- Gain of electrons
- Gain of oxygen
- Loss of oxygen
- Loss of hydrogen
- Gain of hydrogen

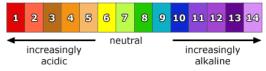
OIL RIG

- Reducing agents are oxidized and oxidizing agents are reduced
- Potassium iodide is a reducing agent & will go from colorless to red-brown, so is oxidized to produce I₂
 H₂O₂ + 2KI + H₂SO₄→I₂ + K₂SO₄ + 2H₂O

- Potassium manganate is an oxidising agent and will go from purple to colourless
- To test for an oxidising agent, add a reducing agent (KI) and to test for a reducing agent, add an oxidising agent (KMnO₄)

8. ACIDS, BASES AND SALTS

8.1 Properties of Acids


- An acid is a compound which when dissolved in water produces hydrogen ions (H⁺) and are described as proton donors (H⁺)
- Acids turn blue litmus indicator paper (or solution) red.
- Have pH 1 to 6
- Acid + metal → salt + hydrogen gas
- Acid + base → salt + water
- Acid + metal carbonate → salt + carbon dioxide + water
- Strong acids completely ionize in water producing lots of H⁺ ions
- Weak acids partially ionize in water producing few H⁺ ions

8.2 Properties of Bases

- Bases are insoluble substances which neutralize acids to form a salt and water only and are proton acceptors
- Alkalis turn red litmus indicator paper (or solution) to blue.
- Have pH 8 to 14.
- Base + acid → salt + water (+ CO₂ when base is a metal carbonate)
- Base + ammonium salt → salt + ammonia gas + water
- Strong alkalis completely ionize in water producing lots of OH⁻ ions
- Weak alkalis partially ionize in water producing OH⁻ ions

8.3 Neutral

- Neutral substances are pH 7.
- Acidity in soil:
 - o Plants grow at a pH near 7.
 - o If it is too acidic or alkaline they will not grow.
 - o Acidic soil is fixed by adding lime.

• pH is the concentration of H⁺ ions per dm³ of solution

8.4 Indicators

INDICATOR	COLOR IN ACID	COLOR IN ALKALINE
Phenolphthalein	Colorless	Pink
Methyl orange	Pink	Yellow
Methyl red	Red	Yellow
Red litmus	Red	Blue
Blue litmus	Red	Blue

8.5 Types of Oxides

- Metal oxides are basic e.g. iron oxide and magnesium oxide
- Non-metal oxides are acidic e.g. sulphur oxide and carbon dioxide
- Aluminum, zinc and lead form amphoteric oxides e.g. zinc oxide
- Oxides which are neither acidic or basic are neutral e.g. water and carbon monoxide

8.6 Preparation of Salts

- A salt is a substance formed when all the replaceable hydrogen ions of an acid are replaced by metal ions or the ammonium ion
 - o Salts can either be soluble or insoluble

SOLUBLE SALTS	INSOLUBLE SALTS	
All sodium, potassium and		
ammonium salts		
All nitrates		
Chlorides	Except silver and lead	
Sulphates	Except barium, lead and calcium	
Potassium, sodium and ammonium carbonates	All other carbonates	

8.7 Type of Salts

TYPE OF SALT REQUIRED	ACID USED
Sulphate	Sulphuric acid
Nitrate	Nitric acid
Chloride	Hydrochloric acid
Ethanoate	Ethanoic acid

8.8 Starting with a Metal

- Add excess metal to an acid
- When bubbling (hydrogen) stops the reaction is done
- Filter off excess metal

8.9 Starting with an Insoluble Base

- Add insoluble base to acid and heat gently, it will dissolve
- Keep adding until no more dissolves (reaction is done)
- Filter out the insoluble (excess) base

8.10 Starting with an Alkali (Titration):

- Put a certain amount alkali in a flask
- Add phenolphthalein
- Add acid from a burette, stirring, until it goes colorless
- Find out how much acid you used
- Repeat, to be more accurate
- Evaporate water from neutral solution

8.11 Precipitation

- Mix the two soluble salts, so they react together
- Filter the mixture to separate the products produced (soluble and insoluble salt produced)
- Wash the insoluble salt on the filter paper
- Dry the insoluble salt in a warm oven

8.12 Test for Aqueous Cations

CATION	EFFECT OF AQ. NAOH	EFFECT OF AQ. AMMONIA
ALUMINUM (AL³+)	White soluble precipitate formed giving a colorless solution	White precipitate formed
AMMONIUM (NH ₄ ⁺)	Ammonium gas produced turns damp red litmus blue	
CALCIUM (CA ²⁺)	White precipitate formed	No precipitate/ slight white precipitate
COPPER (CU ²⁺)	Light blue precipitate formed	Light blue soluble precipitate formed giving dark blue solution
IRON(II) (FE ²⁺)	Green precipitate formed	Green precipitate formed
IRON(III) (FE³+)	Red-brown precipitate formed	Red-brown precipitate formed
ZINC (ZN ²⁺)	White soluble precipitate formed giving a colorless solution	White soluble precipitate formed giving a colorless solution

8.13 Test for Anions

ANION	TEST	TEST RESULT
CARBONATE	Add dilute nitric acid	Bubble gas through
(CO ₃ ² -)		limewater-from
		colorless to cloudy
CHLORIDE	Add nitric acid, then	White precipitated
(CL ⁻)	aqueous silver nitrate	formed
BROMIDE	Add nitric acid, then	Cream precipitate
(BR ⁻)	aq. silver nitrate	formed
IODIDE (I ⁻)	Add nitric acid, then	Bright yellow
	aqueous silver nitrate	precipitate formed
NITRATE	Add aqueous sodium	Gas produced turns
(NO ₃ -)	hydroxide then add	damp red litmus
	aluminum	paper blue
SULPHATE	Add dilute nitric acid,	White precipitate
(SO ₄ ²⁻)	then add aq. barium	formed
	nitrate	

8.14 Test for Gases

GAS	TEST AND TEST RESULT
Ammonia (NH₃)	Damp red litmus paper turns blue
Carbon dioxide (CO₂)	Bubble gas through–from colorless to cloudy
Chlorine (Cl ₂)	Bleaches red/blue litmus paper
Hydrogen (H₂)	Place lighted splint, squeaky pop
Oxygen (O ₂)	Place glowing splint, splint relights

9. THE PERIODIC TABLE

- The Periodic table is a method of classifying elements.
- They are arranged in order of increasing atomic number.
- Made up of rows called periods and columns called groups
- Metals are to the left and non-metals are to the right.
- Elements in the same group have similar properties.
- Group number tells us the number of valency electrons and the period number tells us about the number of electron shells

9.1 Periodic Trends

- Non-metals are on the right side of the periodic table, and metals are on the left.
- Down a period of metals they become more reactive
- With non-metals, going down a period, the non-metal becomes less reactive

9.2 Alkali Metals

• Lithium, sodium and potassium

CHEMICAL PROPERTIES	PHYSICAL PROPERTIES
• Form ionic compounds	Good conductors of
 React violently with 	heat and electricity.
chlorine	 Are soft, compared to
 Burst into flames when 	other metals.
heated with oxygen:	 They have low densities
 A red flame for 	for metals.
lithium	They have low melting
 A yellow flame for 	and boiling points
sodium	compared to most
 A lilac flame for 	metals.
potassium	
 Produce soluble white 	
compounds.	
 React with cold water. 	

Patterns

- Reactivity, density & softness increases down the group
- Melting and boiling points decreases down the group.
- Reactivity increases as more electron shells means there is weaker attraction between nucleus & valency electron so is lost more easily.

PATTERNS

• Will react more easily.

9.3 Halogens

PROPERTIES

PROPERTIES	PATTERNS
• Form colored gases, at	• Down the group; size,
RTP:	mass and density
 Fluorine is a yellow gas 	increases
 Chlorine is a green gas 	 Down the group, color
 Bromine is a red liquid 	darkens
 lodine is a black solid 	• Reactivity decreases down
 Are poisonous 	the group, because it has
• Brittle and crumbly when	to gain an electron, so the
solid	closer the electron is to
• Do not conduct electricity	the positive nucleus the
• Form diatomic molecules	more easily it will be
	gained, so atoms with
	fewer shells

9.4 Transition Metals

- High melting points (except mercury)
- Malleable and ductile
- Good conductors of heat & electricity (silver is the best)
- High density
- Have no trend in reactivity

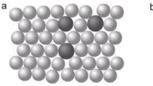
- Can be used as catalysts
- Form colored compounds
- Can form complex ions as they have variable valences

9.5 Noble Gases

PROPERTIES USES • Density increases down • Helium- filling balloons and aircrafts because it the group is lighter than air and • M.p. and b.p. increases down the group will not catch fire. Argon – filling (tungsten) • Don't conduct light bulbs to stop the electricity filament reacting with • Don't take part in chemical reactions oxygen. • Neon - is used in advertising signs because it glows red.

10. METALS

10.1 Properties of Metals


PHYSICAL	CHEMICAL
High density	Form basic oxides
Shiny when polished	Form positive ions
 Malleable 	
• Ductile	
• High m.p. And b.p.	
Conductor of heat &	
electricity	

10.2 Allovs

- An alloy is two or more metals, or a metal and non-metal which have been made molten and then mixed together
- Alloys are used because they have improved qualities for a particular job over the pure metals

ALLOY	MADE FROM	SPECIAL PROPERTIES	USES
Brass	Copper and zinc	Stronger and more resistant to corrosion	Electrical fittings, car radiators
Bronze	Copper and tin	Harder, stronger and sonorous	Statues, springs, coins
Stainless steel	Iron, chromium and nickel	Does not rust	Kitchen sinks, cutlery, chemical plant

- Metals are often used as alloys because they have an increased range of uses and mixture of atoms gives an irregular structure which stops layers sliding over each other easily; they are stronger
- This is what the structure of an alloy (a) looks like, compared to a pure metal (b).

10.3 Reactivity Series

 Ca – Calcium Mg – Magnesium Al – Aluminum C – Carbon Zn – Zinc Fe – Iron Pb – Lead H – Hydrogen Cu – Copper Ag – Silver Au – Gold Everything above hydrogen can displace hydrogen from its acid, and hydrogen cannot reduce their oxides. Metals above carbon, their oxides cannot be reduced by carbon. More reactive metals will react with cold water, and less reactive will react slowly or not react with steam. Aluminum seems unreactive because it forms an oxide layer which protects it

10.4 Displacement Reactions

- These are reactions in which metals compete for oxygen or anions
- The more reactive metal will displace the less reactive metal from oxygen or an anion.
- If more reactive metal has oxygen or an anion, no reaction occurs
- The bigger the difference in reactivity between the two metals, the faster the reaction

10.5 Thermal Decomposition

GROUP	METAL CARBONATE	METAL HYDROXIDE	METAL NITRATE
Group I (except lithium)	Do not decompose	Do not decompose	Metal nitrite and oxygen
Group II, lithium & transition metals	Metal oxide and carbon dioxide	Metal oxide and water	Metal oxide, nitrogen dioxide and oxygen

10.6 Extraction of Metals

METAL	EXTRACTION METHOD	
K - Potassium		
Na - Sodium		
Ca – Calcium	Reduction via	actio
Mg –	electrolysis	oose
Magnesium		omp d of
Al – Aluminum		difficult to decompose
CARBON		ult to
Zn – Zinc	Reducing via heating	iffic.
Fe – Iron	with Carbon or Carbon	more d ul/expe
Pb – Lead	Monoxide	s mo
Н	Ores I	
Cu – Copper		Ores more difficult to decompose More powerful/expensive method of extraction
Ag – Silver	Occur naturally	Σ
Au – Gold		

10.7 Extracting Iron

- Ore = hematite (Fe₂O₃)
- Uses of slag
 - o To make roads
 - o To make cement
- Coke burns with air carbon + oxygen → carbon dioxide
- Carbon dioxide reacts with coke

 $carbon\ dioxide + carbon \rightarrow carbon\ monoxide$

- Carbon monoxide reduces Iron(III) oxide to iron iron(III) oxide + carbon monoxide → iron + carbon dioxide
- The limestone reacts with impurities to form slag

calcium carbonate + silicon dioxide \longrightarrow calcium silicate + carbon dioxide

10.8 Iron to Steel

- Molten iron from blast furnace is poured into an oxygen furnace.
- Calcium oxide is added, and a jet of oxygen is turned on.
- The calcium oxide neutralizes acidic impurities, forming slag that is skimmed off and oxygen burns the other impurities away.
- The carbon content is checked continually until it is just right then the oxygen is turned off.
 - Mild Steel (0.25% carbon) Used in machinery and car bodies
 - o Medium carbon steel (0.5%) Used in railway lines
 - High carbon steel (1.5% carbon) Used in knives and blades

10.9 Extracting Zinc

- Ore = Zinc Blende = Zinc Sulphide (ZnS)
- Zinc blende is roasted in air to convert it to zinc oxide
- Zinc oxide is reduced using coke to zinc and carbon monoxide in the furnace
- As zinc is volatile, the gaseous metal is distilled leaving less-volatile impurities behind.

Zinc is condensed and liquid is run into mould.

10.10 Uses of Metal

- Aluminum
 - Airplane/Cars (Strong/Low density/resistant to corrosion)
 - o Cans/Foil (Resistant to corrosion/malleable)
 - Overhead cable (Good conductor of electricity/ductile)
- Zinc
 - Galvanizes Iron = coats it to stop it rusting
 - Alloys brass/bronze
 - Batteries
 - Sacrificial Protection
- Copper
 - Electrical Wiring (Good conductor of electricity/Ductile)
 - o Cooking utensils (Malleable/good conductor of heat)
 - Roofs (hard wearing against weather

11. AIR AND WATER

11.1 Tests for Water

TEST	TYPE OF TEST	POSITIVE RESULT
Blue Cobalt(II)	Chemical	Paper turns from
Chloride Paper		blue to pink
Anhydrous	Chemical	From white
Copper(II)		powder to blue
Sulphate powder		crystals
Test m.p. and b.p.	Physical	m.p. at 0°C and
		b.p. at 100°C

11.2 Purification of Water

- Water is pumped into screens, which remove solid floating debris.
- Aluminum sulfate is added to coagulate (stick together) small pieces of clay so that they are easily removed.
- The water is then filtered through coarse sand to remove larger, insoluble debris.
- The water encounters more flocculants (chemicals that make particles move down to bottom of tank) and is filtered again through fine sand.

- Chlorine gas is bubbled through the water to kill bacteria. This makes the water slightly acidic, so to reverse this appropriate amounts of sodium hydroxide (an alkali) is added.
- Some countries also add fluorine

11.3 Use of Water

AT HOME Drinking Cooking Washing On farms for animals & crops IN INDUSTRY Dissolve wash and cool things In power stations where steam is used to turn turbines

<u>11.4 Air</u>

- Clean air is composed of approximately
 - o 79% nitrogen
 - o 20% oxygen
 - Remainder: noble gases, water vapor & carbon dioxide

<u>11.5 Pollutants in Air</u>

POLLUTANT	SOURCE	PROBLEMS CAUSED
Carbon Monoxide CO	Incomplete combustion of carbon-containing substances	Reacts with haemoglobin, preventing it from carrying oxygen; death due to oxygen starvation
Sulphur Dioxide SO ₂	From combustion of fossil fuels which contain sulfur	Irritates eyes and throat, causes respiratory problems and causes acid rain
Oxides of Nitrogen NO _x	From car exhausts	Causes respiratory problems and forms acid rain
Lead compounds	From burning of petrol as lead is added to it for better performance	Causes damage to brain and nerve cells in young children

11,6 Fractional Distillation of Air

- Air is filtered to remove dust
- Water vapor and carbon dioxide removed, (because they would freeze and block the pipes):
 - o air is cooled until water vapor condenses
 - then passes over absorbent beads to trap carbon dioxide

- It is compressed, causing it to heat up. Cooled by recycling cold air
- The cold compressed air is passed through a jet, into a larger space. It expands rapidly, making it very cold.
- This is repeated, cooling the air more. By -200°C it is liquid except for neon and helium. These gases are removed. They can be separated from each other by absorption on charcoal.
- The liquid air is pumped into the fractioning column.
 There it is slowly warmed up. The gases boil off one by one, and are collected in tanks or cylinders.
- **Sources of methane:** oil and natural gas, decomposition of vegetation, and waste gases from digestion in animals

11.7 Catalytic Convertor

- In the combustion engine, insufficient amounts of oxygen lead to incomplete combustion of the carbon containing fuel
- Gases produced: (a) carbon monoxide (b) oxides of nitrogen
- A catalytic convertor catalyzes the reduction of NO₂ to nitrogen gas N₂ and catalyzes the oxidation of CO to CO₂

11.8 Rust Preventition

- Coating with something to prevent contact with air and moisture
 - Plastic, paint and grease
 - o Electroplating with tin or chromium
 - o Galvanising: dipping in molten zinc
- Sacrificial protection: attaching a piece of metal that is more reactive that iron to object, commonly magnesium or zinc. This will corrode in the place of iron.

11.9 Fertilizer

- NPK used in fertilizers because:
 - Nitrogen is needed for chlorophyll and other proteins.
 - o Phosphorus helps roots grow and crops ripen.
 - o Potassium helps make proteins and resist diseases.
- All alkalis (except ammonia) will react with ammonium compounds, removing ammonia, for example:

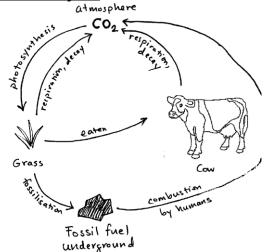
Calcium hydroxide + Ammonium chloride → Calcium Chloride + Water + Ammonia

11.10 Greenhouse Gases

- The greenhouse gases are: carbon dioxide and methane.
- They stop heat escaping in to space.
- Too much greenhouse gases leads to climate change.
- This will cause the ice poles to melt, rising sea levels, more droughts, storms, floods and famine; global warming

11.11 Formation of Carbon Dioxide

- Carbon dioxide is produced whenever carbon or any of its compound are completely burned in excess oxygen
- It is also formed as a product of respiration
- It is produced as product of reaction between an acid and carbon
- From the thermal decomposition of a carbonate


11.12 Haber Process

• Industrial manufacture of ammonia NH₃

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

- Raw materials:
 - o Nitrogen: from the air
 - O Hydrogen: methane + steam → carbon dioxide + hydrogen
- Essential conditions:
 - Temperature: 450°CPressure: 200atmCatalyst: Iron

11.13 Carbon Cycle

12. SULFUR

12.1 Sources

- Found as an element, in large underground beds
- Found around the rims of volcanoes.
- It occurs in metal ores e.g. lead sulphide
- Sulphur compounds also occur naturally in the fossil fuels e.g. coal

12.2 Uses

bacteria

SULFUR

- Manufacture of sulphuric acid
- To bleach wool, silk and wood pulp for making paper

SULFUR DIOXIDE

 As a sterilising agent in making soft drinks and jam, and in drying fruit; stops growth of bacteria and moulds.

As a food preserver; kills

- As a bleach in the manufacture of wood pulp for paper
- In car batteries as electrolyte
- In manufacture of sulphuric acid (through Contact process)

12.3 Contact Process

- Sulphur is first burned in air producing sulphur dioxide
- It is then mixed with more air and passed over four separate beds of catalyst, Vanadium (V) oxide, at 450°C to form sulphur trioxide
- It is then dissolved in concentrated sulphuric acid forming a thick fuming liquid called oleum
- It is then mixed carefully with water to form concentrated sulphuric acid.
- Essential conditions:
 - o Catalyst: Vanadium (V) oxide
 - Temperature: 450°CPressure: 2atm

12.4 Properties of Sulfuric Acid

- Forms salts called sulphates
- When concentrated, it's a dehydrating agent, and a thick oily liquid
- It turns blue litmus red
- It is a strong acid and has the properties of a typical strong acid: reacts with bases, low pH, high conductivity

13. CARBONATES

CALCIUM CARBONATE (limestone)

AQUEOUS CALCIUM HYDROXIDE (lime water)

Ca C CALCIUM OXIDE (quicklime)

SOLID CALCIUM HYDROXIDE (slaked lime)

- Lime is manufactured by limestone by heating
- $CaCO_3$ + heat \rightarrow CaO + CO_2

• Uses of quick lime:

- Making steel from iron
- o To neutralise acidity in soil
- Drying agent in industry

• Uses of slaked lime and lime:

- Neutralise acidity in soil, and in lakes affected by acid rain,
- Neutralising acidic industrial waste products, e.g. flue gas desulphurisation

• Uses of limestone:

- Making cement: made by mixing limestone with clay, heating mixture strongly in a kiln, adding gypsum (calcium sulphate), and grinding up the final solid to give a powder
- Making iron from iron ore: limestone reacts with sand) forming slag (calcium silicate), which is then used for road building.

14. ORGANIC CHEMISTRY

14.1 Homologous Series

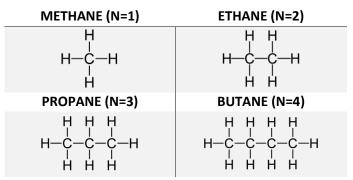
- **Homologous series:** 'family' of similar compounds with similar properties due to the presence of the same functional group.
- Characteristics of a homologous series:
 - o all the compounds fit the same general formula
 - o the chain length increases by 1 each time
 - as the chain gets longer, the compounds show a gradual change in properties
- **Structural isomers:** have the same chemical formula, but different structures, they can be straight or branched

14.2 Fuels

- Fuels to know:
 - o Coal
 - o Natural gas: main constituent is methane
 - Petroleum: a mixture of hydrocarbons which can be separated into fractions

14.3 Uses of Petroleum Fractions

- Refinery gas: bottled gas for heating and cooking
- Gasoline fraction: fuel (petrol) in cars
- Naphtha fraction: making chemicals
- Kerosene/paraffin fraction: jet fuel, lamps
- Diesel oil/gas oil fraction: fuel in diesel engines
- Fuel oil fraction: fuel in ships and home heating systems
- Lubricating fraction: lubricants, waxes and polishes
- Bitumen: making roads


14.4 Name of Compounds

Name ending → compound-type name

- "ane" → alkane
- "ene" → alkene
- "ol" → alcohol
- "oic acid" → carboxylic acid
- "yl", "oate" → ester

14.5 *Alkanes*

General formula = C_nH_{2n+2}

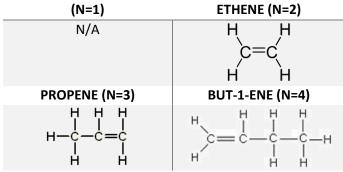
• Each carbon atoms in an alkene has four covalent single bonds – this makes them quite unreactive.

Combustion:

- Complete combustion: enough oxygen supply so water and carbon dioxide form.
- e.g. $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
- Incomplete: is not enough oxygen to burn them cleanly so either carbon monoxide and water or carbon and water form.

e.g.
$$2CH_4 + 3O_2 \rightarrow 2CO + 4H_2O$$
 or e.g. $CH_4 + O_2 \rightarrow C + 2H_2O$

Chlorine substitution:


- Sunlight or light is necessary
- A chlorine atom replaces a hydrogen atom
- This can happen to all hydrogen atoms if there is enough chlorine.

e.g.
$$CH_4 + Cl_2 \rightarrow (light) \rightarrow HCl + CH_3Cl / CH_2Cl_2 / CHCl_3 / CCl_4$$

Compounds = chloromethane / di/tri/tetrachloromethane

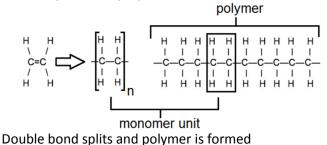
14.6 Alkenes

General formula = C_nH_{2n} Functional group: C=C bond

Cracking:

- Thermal decomposition reaction, in which an alkene (and sometimes hydrogen) are produced from an alkane.
- Cracking always produces short chain compound with a C=C bond
 - e.g. Cracking of ethane will give ethene and hydrogen

• Butane \rightarrow Ethane + Ethene ; $C_4H_{10} \rightarrow C_2H_6 + C_2H_4$

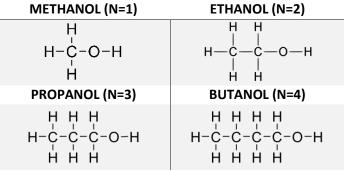

SATURATED HYDROCARBONS

UNSATURATED HYDROCARBONS

- Have NO double bonds
- Do not react with aqueous bromine, so the mixture stays orange.
- Have double bonds
- React with aqueous bromine, turning the mixture from orange to colourless.

14.7 Addition Polymerisation

- A polymer is a compound with very long carbon chains made up of monomer units.
- Poly(ethene) / Polythene: is a polymer produced from ethene by addition polymerization



14.8 Alkenes' Addition Reactions

- With bromine: (the test for saturation)
 e.g. ethene (g) + bromine (aq) → 1,2-dibromomethane
 (I)
- With steam: forms alcohols with heat, pressure and a catalyst
 - e.g. ethene (g) + steam (g) \rightleftharpoons ethanol (l)
- With hydrogen: double bond breaks down to for an alkane with heat, pressure and a catalyst
 e.g. ethene (g) + hydrogen (g) → ethane (g)

14.9 Alcohols

General formula = C_nH_{2n+1}OH Functional group: OH

Formed by:

FERMENTATION

CATALYTIC ADDITION OF STEAM TO ETHENE

- Enzymes in yeast break down glucose to ethanol and carbon dioxide, giving out heat
- Can be done with substances that contain cellulose, starch or glucose
- Done by grinding source (e.g. grapes) and adding enzymes to break down cellulose and starch into glucose.
- Leave it to ferment.
- Fractional distillation is used to get ethanol from the mixture

- Ethene is obtained by cracking long-chain alkenes from oil.
- The ethene reacts with steam (reversibly) in the following conditions:
 - o 570°C
 - o 60-70atm
 - Catalyst = phosphoric acid
- Low temperature gives a better yield, but high temperature is used to give a better rate of reaction.

		CIE IGCSE CH
	ADVANTAGES	DISADVANATGES
FERMENTATION	 Renewable source Good use of waste organic material 	 Lots of material needed so big tanks needed Fractional distillation is expensive Slow process Batch process
ETHENE	FastContinuous processPure ethanolSmaller containers	Oil is a non-renewable resourceLot of energy to make steam and get right

• Ethanol burns well in oxygen, giving out plenty of heat, as well as carbon dioxide and water.

conditions

recycled)

 Lot of ethene is unreacted, (and then

• Ethanol is used as a:

FROM

- Solvent: to dissolve things than water cannot.
 Evaporates easily, so used as solvent in glues, printing inks & perfumes
- Fuel: added to or instead of petrol, because it burns cleanly

14.10 Carboxylic Acids

General formula = C_nH_{2n+1}COOH Functional group: COOH

Properties of Ethanoic Acid:

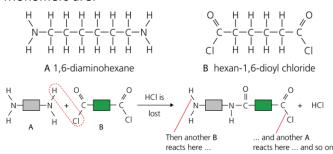
- Weak acid with high pH and low dissociation
- Formed by:
 - o Oxidation of ethanol
 - With acidified potassium mangenate (VII)
- Carboxylic acids react with alcohols to give esters, in a condensation reaction, for example:
- Ethanoic acid + ethanol

 ethyl ethanoate + water
 (alcohol = -yl & carboxylic acid = -oate)

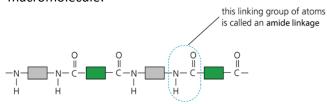
14.11 Macromolecules

• Large molecules built up from small units (monomers).

 Different macromolecules have different units and/or different linkages

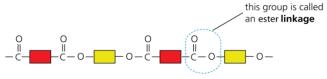

Example of:

SMALL UNITS (MONOMERS)	LINKAGES	MACROMOLECULES
• glucose	• amide	• protein
amino acids	• ester	starch
fatty acids		• lipids
and glycerol		


	USE	STRUCTURE
POLYTHENE	 Plastic bags and gloves, clingfilm (low density), mugs, bowls, chairs, dustbins (high density) 	n C=C H H H C C C H H H n poly(ethene) polythene
POLYCHLOROE THANE (PVC)	 Water pipes, wellingtons, hoses, covering for electricity cables 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
POLYPROPENE	• Crates, ropes	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
POLYSTYRENE	 Used as expanded polystyrene in fast- food cartons, packaging, and insulation for roofs and walls 	phenylethene poly(phenylethene)
TEFLON	 Coated on frying pans to make them non- stick, fabric protector, windscreen wipers, flooring 	n C C T F F T T T T T T T T T T T T T T T

Making nylon:

- Uses: ropes, fishing nets and lines, tents, curtains
- Monomers are:


- No double bonds break, instead single bonds break, and new single bonds form.
- The monomers are able to join to each other by eliminating a small molecule: hydrogen chloride.
- This reaction continues at each the two monomers.
- Thousands of molecules join together, giving a macromolecule:

Making terylene

- Uses: clothing (especially mixed with cotton), thread
- Monomers are:

• The monomers join by eliminating a water molecule. Thousands of molecules join up, giving a macromolecule

14.12 Pollution from Plastics

- Choke birds, fish and other animals that try to eat them. Or they fill up the animals' stomachs so that they can't eat proper food, and starve to death.
- They clog up drains and sewers and cause flooding.

- They collect in rivers, and get in the way of fish. Some river beds now contain a thick layer of plastic
- They blow into trees and onto beaches. So the place looks a mess. Tourists become put off.

14.13 Natural Macromolecules

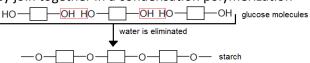
• Food's main constituents are proteins, fats and carbohydrates.

Proteins:

 Proteins contain the same linkages (amide links) as nylon, but with different units. Their structure is:

 In digestion proteins are broken down into amino acids (hydrolysis).

Fats:


- Fats are esters possessing the same linkage as Terylene (ester links) but with different units.
- Soap is a product of the hydrolysis of fat. It is done using sodium hydroxide (as opposed to acid, in digestion). The hydrolysis gives glycerol and the sodium salts of fatty acids. The salts are used as soaps.

Carbohydrates:

 Complex carbohydrates: are a large number of joined sugar units (monosaccharide like glucose). The sugar units are represented like this:

They join together in a condensation polymerization

- In digestion, the hydrolysis (Decomposition of a chemical compound by reaction with water) of starch happens in the mouth by the enzyme amylase to make glucose
- Hydrolysis:
 - \circ Starch \rightarrow glucose
 - Proteins → amino acids
 - Fats → fatty acids and glycerol
- But if hydrolysis is not complete, macromolecules are not completely broken down so you get a mixture of molecules of different sizes

• Identification:

- Chromatography can be used to identify products & substances
- However, amino acids and sugars are colourless when dissolved in water, so a locating agent is used.
- Substances can be identified using Rf values or by matching them with spots which are horizontal

CIE IGCSE CHEMISTRY//0610 © Copyright 2017, 2014 by ZNotes First edition © 2014, by Zubair Junjunia for the 2014 syllabus Second edition © 2017, updated by Thowaibah Junjunia for the 2016-18 syllabus This document contain images and excerpts of text from educational resources available on the internet and printed books. If you are the owner of such media, text or visual, utilized in this document and do not accept its usage then we urge you to contact us and we would immediately replace said media. No part of this document may be copied or re-uploaded to another website without the express, written permission of the copyright owner. Under no conditions may this document be distributed under the name of false author(s) or sold for financial gain; the document is solely meant for educational purposes and it is to remain a property available to all at no cost. It is currently freely available from the website www.znotes.org This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.