ZNOTES // IGCSE SERIES

 visit www.znotes.org
Updated to 2016-18 Syllabus

OE IVGOECHEMISTRY OKIO

ALTERNATIVE TO PRACTICAL NOTES (PAPER 6)

Top pan balance

Gauze

Stop watch

- Reducing Copper(III) Oxide to Copper

EXPERIMENTS

- Showing that oxygen and water is needed for rusting iron

air and water

water
no air

air
no water
calcium
chloride

- Showing that air is 21\% Oxygen

RATES OF REACTION

- Testing factors affecting rate of reaction
- Different temperature acid
- Different size of particle/reactant
- Concentration of acid

RATES OF REACTION

- Time how long it takes for the cross to disappear from view
- You can change the temperature and concentration of acid used
$20 \mathrm{~cm}^{3}$ of dilute nitic acid
- Keep constant:
- Diameter of beaker
- The Cross
- Volume

initial view through conical flask from above

sôdium thiosulffate and dilute hydrochloric acid

- Find the amount of energy given when an alcohol is burnt:
- You need to know:
- Mass of water
- Change in mass of burner containing alcohol
- Specific heat capacity of water
- Temperature change of water

- The molecular mass of the alcohol
- $\frac{\text { Change in mass }}{\text { Molecular mass }}=$ Number of moles burnt

- Change in temperature \times mass of water \times SHC of water $=$ Energy
- $\frac{\text { Energy }}{\text { Moles burnt }}=$ amount of energy per mole $(\mathrm{J} / \mathrm{mol})$

Finding CONCENTRATION

- Acid and base titration to find the concentration of a solution:
- Measure volume of acid then pour into conical flask
- Record initial volume of base in burette
- Slowly add base from burette, stirring each time
- When indicator neutral, record final volume of base
- Find amount of bas used: Final - Initial
- Find moles of base used by volumexconcentration
- Use balanced equation to find how many moles of acid are needed to neutralize the base
- $\frac{\text { Number of moles of Acid Needed }}{\text { Volume of Acid Used }}=$ Concentration of Acid

Flame Tests

- \quad Lithium $=$ Red
- Sodium = Yellow
- Potassium = Lilac
- Iron = Gold
- Magnesium = Bright White
- Source of errors for flame tests:
- The test cannot detect low concentrations of most ions.
- Brightness of the flames varies from one sample to another.
- Impurities or contaminants affect the test results.
- The test cannot differentiate between all elements or compounds

ChROMATOGRAPHY

- Principle: Difference in solubility separates different pigments
- Drop substance to center of filter paper and allow it to dry
- Drop water on substance, one drop at a time
- Paper + rings $=$ chromatogram.
- Stationary phase: material on which the separation takes place
- Mobile phase: mixture you want to separate, dissolved in a solvent.
- Interpreting simple chromatograms:
- Number of rings/dots = number of substances
- If two dots travel the same distance up the paper they are the same substance.

Chromatography

- You can calculate the Rf value to identify a substance, given by the formula:

$$
R f \text { Value }=\frac{\text { Distance moved by solute }}{\text { Distance moved by solvent }}
$$

- To make colorless substances visible
- Dry chromatogram in an oven
- Spray it with a locating agent
- Heat it for 10 minutes in the oven

Different colored inks

Separation Methods

- Filtration
- Mixture goes in a funnel with filter paper, into a flask.
- Residue is insoluble and filtrate goes through
- Crystallization
- Some water in the solution is evaporated so solution becomes

Separation Methods

- Simple distillation:
- Impure liquid is heated
- It boils, and steam rises into the condenser
- Impurities are left behind
- Condenser is cold so steam condenses to the pure liquid and it drops into the beaker

- Fractional distillation:
- Removes a liquid from a mixture of liquids, because liquids have different b.p.s
- Mixture is heated to evaporate substance with lowest b.p.
- some of the other liquid(s) will evaporate too.
- Beads are heated to boiling point of lowest substance, so that substance being removed cannot condense on beads.
- Other substances continue to condense and will drip back
 into the flask
- The beaker can be changed after every fraction.

SEPARATION METHODS

- Separating mixture of two solids:
- Can be done by dissolving one in an appropriate solvent
- Then filter one and extract other from solution by evaporation
- If one solid is magnetic, can use a magnet e.g. sand and iron

Solvent	It dissolves...
Water	Some salts, sugar
White spirit	Gloss paint
Propanone	Grease, nail polish
Ethanol	Glues, printing inks, scented substances, chlorophyll

- Choosing a suitable method:

Method of separation	Used to separate
Filtration	A solid from a liquid
Evaporation	A solid from a solution
Crystallization	A solid from a solution
Simple Distillation	A solvent from a solution
Fractional Distillation	Liquids from each other
Chromatography	Different substances from a solution

MAKING SALTS

- When bubbling (hydrogen) stops the reaction is done
- Filter off excess metal
- Starting with an insoluble base:
- Add insoluble base to acid and heat gently, it will dissolve
- Keep adding until no more dissolves (reaction is done)
- Filter out the insoluble (excess) base

MAKING SALTS

- Titration:
- Put a certain amount alkali in a flask and add phenolphthalein
- Add acid from a burette, stirring, until it goes colorless
- Find out how much acid you used and repeat, to be more accurate
- Evaporate water from neutral solution
- Precipitation:
- Mix the two soluble salts, so they react together
- Filter the mixture to separate the products produced (soluble and insoluble salt produced)
- Wash the insoluble salt on the filter paper
- Dry the insoluble salt in a warm oven

SALTS AND INDICATORS

- Solubility of salts:

Soluble Salts	Insoluble Salts
All sodium, potassium and ammonium salts	The rest
All nitrates	N/A
Chlorides	Except silver and lead
Sulphates	Except barium, lead and calcium
Potassium, sodium and ammonium carbonates	All other carbonates

- Indicators:

Indicator	Color in acid	Color in alkaline
Phenolphthalein	Colorless	Pink
Methyl orange	Pink	Yellow
Methyl red	Red	Yellow
Red litmus	Red	Blue
Blue litmus	Red	Blue

- pH Scale:

Cation	Sodium Hydroxide	Ammonia
Aluminum ($\left.\mathbf{A l}^{3+}\right)$	Soluble white ppt.	White ppt.
Ammonium $\left(\mathbf{N H}_{4}{ }^{+}\right)$	Ammonium gas - damp red litmus turns blue	N/A
Calcium (Ca2+)	White ppt.	No ppt.
Copper ($\left.\mathbf{C u}^{2+}\right)$	Light blue ppt.	Light blue soluble ppt.
Iron(II) $\left(\mathrm{Fe}^{2+}\right)$	Green ppt.	Green ppt.
Iron(III) $\left(\mathrm{Fe}^{3+}\right)$	Red-brown ppt.	Red-brown ppt.
Zinc $\left(\mathrm{Zn}^{2+}\right)$	White soluble ppt.	White soluble ppt.

Anion	Test	Test result
Carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$	Add dilute nitric acid	Limewater goes cloudy
Chloride (Cl^{-})	Add nitric acid, then aqueous silver nitrate	White ppt.
Bromide (Br^{-})		Cream ppt.
Iodide (${ }^{-}$)		Yellow ppt.
Nitrate ($\mathrm{NO}_{3}{ }^{-}$)	Add aqueous sodium hydroxide then add aluminum	Gas produced turns damp red litmus paper blue
Sulphate ($\mathrm{SO}_{4}{ }^{2-}$)	Add nitric acid, then add aqueous barium nitrate	White ppt.

Gas	Test and test result
Ammonia $\left(\mathrm{NH}_{3}\right)$	Damp red litmus paper turns blue
Carbon dioxide $\left(\mathrm{CO}_{2}\right)$	Bubble gas through limewater - from colorless to cloudy
Chlorine $\left(\mathrm{Cl}_{2}\right)$	Bleaches red/blue litmus paper
Hydrogen $\left(\mathrm{H}_{2}\right)$	Place lighted splint, squeaky pop
Oxygen $\left(\mathrm{O}_{2}\right)$	Place glowing splint, splint relights

Substance	Test and test result
Water	White anhydrous copper (II) sulphate crystals turns blue
	Blue cobalt chloride paper turns pink
	Add to bromine water; from orange to colourless
Alkane	Add to bromine water; remains orange
	Blue litmus paper turns redAdd a metal carbonate; bubbles of CO_{2}
Base	Red litmus paper turns blue

Preparing Gases in the Lab

To make....	Place in flask:	Add....	Reaction
$\mathbf{C O}_{\mathbf{2}}$	CaCO_{3} (marble chips)	Dilute HCl	$\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+$ $\mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{Cl}_{\mathbf{2}}$	Manganese (IV) oxide (as an oxidising agent)	Conc. HCl	$2 \mathrm{HCL}(\mathrm{aq})+[\mathrm{O}] \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{Cl}_{2}(\mathrm{~g})$
$\mathbf{H}_{\mathbf{2}}$	Pieces of zinc	Dilute HCl	$\mathrm{Zn}(\mathrm{s})+\mathrm{HCL}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
$\mathbf{O}_{\mathbf{2}}$	Manganese (IV) oxide (as a catalyst)	Hydrogen peroxide	$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})$

| Method | Downward
 displacement of
 air | Upward
 displacement of
 air | Over water |
| :---: | :---: | :---: | :---: | :---: |\quad Gas syringe

